The millipedes of Albania: recent data, new taxa; systematical, nomenclatural and faunistical review (Myriapoda, Diplopoda)

Jean-Paul MAURIES
Laboratoire de Zoologie (Arthropodes), Muséum national d'Histoire naturelle, 61 rue de Buffon, F-75231 Paris cedex 05 (France)

Sergei I. GOLOVATCH
Institute for Problems of Ecology and Evolution, Russian Academy of Sciences,
Leninsky prospekt 33, Moscow 117071 (V-71) (Russia)

Pavel STOEV
Dianabad, bl. 2, apt. 84, Sofia 1172 (Bulgaria)

Abstract

A recent collection of Diplopoda deriving from Albania contains thirty-two identifiable species, including four new to science: Acantbopetalum subpatens n.sp. (Schizopecalidae), Anamastigoma albanensis n.sp. (Anthroleucosomatidae), Metunomastus petrelrnsis n.sp. (Paradoxusomatidac) and Typhloiulus beroni n.sp. (Julidac). The millipede fauna of Alb,niaia and adjacent lands is reviewed, with a checklist curvently encompassing fifty genera and over 150 species or subspectes. Some new synonymies are estahlished concerning: Glomeris pnstulata Latreille, 1804; Acamhopetalum carimatum (Brandr, 1840); Brachyiuhts waribolimus Attems, 1904: Acanthoinhts fissipes (C. L. Koch, 1847); P. parius (Fabricius, 1781); Leptoinlus sarajevensis Verhoeff, 1898: Leptoinlus Verhoeff, 1894. A substitute name is proposed for Leptoiulus stwkami Verhueff, 1932: 1, juroshavi nom. now. The julid tribe Typhloulini is synonymized under the Leptoiulini. The name Diphinlus Berlese, 1883, is considered to have been ypified in the original descriprion, with Julus terrestris Linnacus, 175\%, being its valid type species; Diploinhus becomes objective synonym of Julus Linnaeus, 1758, and Acanthoiulus Verhoeff, 1896 , takes priority in the list of synonyms or subgenera of Pachyiulus. Pachyinlus krimolutskyi Golovatch, 1977, is a new subjective junior synonym of hulus fortilissimus Muralewicz, 1907, non Iuhus fortidissimus Savi, 1819, it is available as a replacement name to avoid homonymy. The following raxia are new from Albania; Glomeris pustuhata Latreille, 1804; Acantlopetalum allicliculle Verhocff, 1900; Bracbydesmus heraggowinensis Verhoeff, 1897; Leptnindus matedonicus (Atrems, 1927); Brachyinhtus apfelbrikii Verhocff, 1898: Megapbyllnm imbecillum (Latzel, 1884); Metonomastus Artems, 1937 and Anamastigond Silvestri, 1898.

 fauna, taxonomy, Albania.
résumé

Une importante collection de diplopodes récoltée récemment sur une grande partie du territoire de l'Albanie est érudiće ici ; elle comprend trente-deux espèces dont quatre sont nouvelles pour la Science: Acanthopetahum subpattens 11.sp. (Schizopetalidae), Anamastigona albanensis n.sp. (Anthroleucesomatidae). Metonomastus petrelensis n.sp. (Paradoxosomatidae), Typhloiutus beroni n.sp. (Julidac). Une liste des diplopodes de l'Albanie et des régions voisines est donnce : elle comprend huit ordres, au moins dix-neuf familles, cinquante genres et plus de 150 especes ou sous-espèces d'une validité indiscutable. Plusicurs nouvelles synonymies one pu èree érablies: Glomeris pustuletal Latreille, $1804=$ Gl. norica modnutensis Verhocfi, 1926; Acanthopetaltom carinatu", (Brandt, 1840) $=$ Lysiopetalum contatu Verhoeff. 1900, L. thessaloram Verhoeff, 190I, L. macedonicum Verhoeff. 1923. L. albanicum Verboeff, 1932, L. comma jurimense Verhocff, 1932, L. thessalorum lychnitis Verhoeff, 1932; Brachyiulus paribolinus Attems, $1904=$ B. beratinus Manfredi, 1945 ; Acamthoinlus fuscipes (C. L. Koch, 1847) $=$ Pachyiulus bosniensis Vertoeff, 1895. P. fuscipes altivagzes Verhoeff. 1899, P. f. plasensis Verhoeff, 1910, P.f. simplex Verhoeff, 1910 ; Pachyiulus warius (Fabricius, 178T) = Juhus flavipas C. L. Koch, 1847, Iulus oenologus Berlese. 1885, Pachyiudus apfollocki Verhocff, 1901, P. varius var. pallipes Manfredi. 1945; Leptoiulus sarajovensis Verhocff. 1898 = Macedoiulus storkini Verhoeff, 1932. Un nouveau nom, Leptuintus jaroshani, est proposé ett tentplacement de Leptoinhus storkami Verhoeff, 1932, pour corriger l'homonymie résultant de la synonymia de Leproithus Verhoeff, 1894 et Maceodoiulus Verhocff. 1932. La tribu des Typhloiulini disparait, englobée pat les Leptoiulini. Lec taxon nominal Diploiuhts Berlese. 1883 ess considéré ici comme validé dans la description originale par la désignation de fuhes rerrestris Linnaeus, 1758 , comme espèce-type ; de ce fait, Diplointus devient un synonyme objecrif de Julws Linnacus. 1758, et en conséquence diamhoiulus Verhoeff, 1896, devient prioritaire dans la liste des synonymes ou sousgenres de Pachyiulus Berlese, 1883. Pachyimhas krimhatsky Golovatch, 1977. du Caucase occidental, qui est un nouveau synonyme subjectif plus récent de Iulus foetidissimus Muralewicz, 1907, remplace ce taxon pour éviter l'homonymie avec Lulus fuetidissimus Savi, 181\%. L.es genres Metonounstus Autems, 1937, et Amamastigona Silvestri. 1898, sont répertoriés pour la première fois

MOTS CLES
Diplopoda, faunc, taxinomic, d'Albanie, ainsi que les espèces suivantes: Glumeris prosulata Latreille, 1804; Acanthopetalum albidicolle Verhoeff, 1900: Brachydestma: herzogouinensis Verhoeff. 1897 : Leproiulus matedonicus (Aucms, 1927): Brachyiahlas apfolbeckii Verhoeff, 1898: Meguphyllum :nbecillum (Latzel, 1884).

INTRODUCTION

The diplopod fauna of the Balkan Peninsula, including Albania, has long been acknowledged as one of the richest in the Mediterranean, indeed in the Palaearctic as a whole. Even the incomplete, poor but recent work by Ceuca
(1992), devoted to this fauna, lists 140 genera and over 660 species or subspecies, of which twenty gencra and fifty-three species (including nine endemics) have been recorded in Albania. The present contribution is mainly devoted to the study of a fine collection of Diplopoda recently made in Albania by Dr. P. Beron,

Fig. 1. - Map of Albania. Dark spots represent the localities visited by recent collectors (almost all from Sofia, Bulgaria) since 1993 in numerous parts of the territory of Albania.

Dr．S．Beshkov，Miss＂1．Ivanova，Mr．N．Lanjev， Mr．B．Petrov，Mr．P，Tenchev，Mr．T．Troanski and Miss 1）．Laprianova（all from Sofia， Bulgaria）as well as by two of us（P．Stoev and S．Golovatel）．This collection covers much of the territory of this country（sce Fig．1）and hap－ pens to contain a number of taxa new either to science or to the Albanian list．In addition，seve－ ral samples have allowed us to shed additional light on the status of some older taxa，resulting in some new synonymies．
All this has made it possible in review the entire diplopod fauna of Albania and adjacent areas and to compile a new checklist．As such a pre－ sentation does not lend itself to a separate histo－ rical treatment，all relevant references are given in the text and／or mentioned in the checklist．
The bulk of the material treated here，including all holotypes，have been deposited in the collec－ tion of the National Museum of Natural History in Sofia，Bulgaria（NHMS），with a few samples being retained for the Muséum national d＇Histoire naturelle in Paris，France（MNHN）， and the Zoological Museum of the State University of Moscow，Russia（ZMUM），as indi－ cated hereafter．

TAXONOMIC PART

Order POLYXENIDA Lucas， 1840
Family Polyxenidae Lucas， 1840
Polyxenus lagurus（Linnaeus，1758）
Material examined．－Shkodër District．Bogë， $1550 \mathrm{~m}, 23 . \mathrm{V} .1993,4 \mathrm{juv}$（NHMS），leg．P．Beron \＆ B．Petrov．
Lushnja Districr．Divjaka Natural Park，Pinus bale－ pensis and l ？pinea strand forest，under stones， 10．V．1995，I O（NHMS），leg．S．Golovarch，F．Stoev \＆B．Perrov．

Remarks

This trans－holarctic species has long been repor－ ted from Albania（Attems 1929）．The samples at hand seem to belong to the bisexual race （M．Nguyen Duy－Jacquemin，personal commu－ nication）．

Order GLOMERIDA Leach， 1815
Family Glomeridae Leach， 1815

Onychoglomeris berzogowinensis

（Verhoeff，1898）
（Fig．2A－G）
Materlal examinelf．－Sarandë District．Ionian Coast，Dhërmi，16．1V．1994， 1 （ $\%$（NHMS），leg． S．Beshkov．－Between Dhërmi and Himarë，under
 2 오（7．MUM），leg．P．Sroev．．－Himarë， 3－4．V．1994．I d（NHMS），Icg．P．Stoev．
Vlorë District．Near Dukat， 450 m ，Icaf lituer and under stones．1 L．V．1995， 2 是 9 （NHMS），leq． S．Golovatch，P．Stoev \＆B．Betrov．－Llogorasë Pass，S of Vloré， 1025 m ，under stones，11．V． 1995. 2 oै（NHMS），Icg．S．Galovath，P．Stoey \＆ B．Petrov．
Gjirokaster District．Gjirokaster，castle，under stones，6．V．1994， 2 すず， 3 ㅇ̣（NHMS）； 2 ずす。 2 오（MNHN，Collection Myriapodes CC 068）， leg．P．Stoev．

Remarks

The species name has been misspelt sinec its ori－ ginal proposal（sec history in Atterns 1935，sub hercegovinensis）．This species has been split into three subspecies：O．h．hereogowinentis（Verhoeff， 1898），from Croaria，Bosnia，Hercegovina and Montenegro，O．h．media Atrems，1935，from Albania，and O．b．australis Attems，1935．from Epirus，Greece（Arrems 1935）．The abundans material at hand permits us，however，to ques－ tion this division and we refer to herzogonsinensis as a single，quite widespread and rather variable W Balkan species．
Indeed，size variations range from $13-24 \mathrm{~mm}$ in length and from $7-11 \mathrm{~mm}$ in widrh，with female rypically somewhar larger than male．Coloration of the terga is usually blackish（regardless of the usual pale lateral and caudal margins），only very seldom pale red－ycllowish－brown，with faint marbled markings sometimes visible in places； mostly antero－sublaterally on cach tergite to only a very few postcollar terga．The thomeic shield is crossed by $1-2$ striac．The mate pygidium is usually distinctly concave／impressed transversely． though in one male from Gijrokaster it is almose as convex as in the female．On the other hand， such characters as the single stria across the col－ lum as well as the delicately and densely punctu－

Fig. 2. - Onychoglomeris herzogowinensis (Verhoeff, 1898), ơ ơ from Dhërmi-Himarë (A-D) and Himarë (E-G): A, E, leg 17; B, F, leg 18; C, G, leg 19 (telopods), frontal view; D, femoral process of telopod, caudal view. Scale bar: 0.5 mm .
red pygidium appear stable, though pygidial punctuation is known to be missing in h. berzogowinensis (see Attems 1935).
The structure of the male legs 17 to 19 is also quite variable, e.g. the armature of tarsus 17 with spines and the outline of the extemal lobe of coxa 17 (though the latter is always low and inconspicuous) (Fig. 2A). The notch of syncoxite 18 ranges from broad (Fig. 2B) to very broad, sometimes even with a median knob. The median lobe of syncoxite 19 is more or less high and usually somewhat truncated (Fig. 2C), the inner femoral process is more or less prominent (Figg 2C, D).
The malc from Himarë deserves special mention. Superficially, it represents an unquestioned herzogowinetsis, yer its legpair 18 looks quite bizarre due to a conspicuous inner Cemoral process which strongly resembles that of the telopod proper (Fig. 219). Both legpairs 17 and 19 look normal (Figs 2L., G). However, a closer examination of this specimen showed that its pygidium is abnormal, with an evident asymmetrical notch at the caudal margin. Morcover, the femoral processes on legpair 18 appear somewhat unequal. one of them being bifid. The median lobe of the telopod syncoxite is also slightly asymmetrical.
The coherent distribution pattern, the presence of only a single male exbibiting such a peculiar structurc of legpair 18 (comparable among the Glomerida perhaps only with that of the Glomeridellidae) and, especially, the likely teratology, all this precludes us fromi creating a separate species for this specimen, regardless of its distinctive appearance.

Glomeris pulchra C. L. Koch, 1847

Material examined. - Shkodër District. Bogë, 1300 m , Maya Bridashic, 20.V.1993, 4 5 0 , 5 웅 (NHMS), 1 \quad, 1 ¢ (MNHN, Collection Myriapodes
 Petrov. - Zogaj, artificial gallery, 13.IV.1994. 2 ठ̊

Remarks

All these samples display a colour pattern typical for the species concerned, with a pair of pale spots also on terga 5 to 7 . This species (which includes numerous varieties - e.g. Attems 1929) has already been reported from Albania and the adjacent Balkan regions.

Glomeris pustulata Latreille, 1804
Glomeris norica vodnatensis (Verhoeff, 1926), syn. n.
Material examined. - Rhëshen District. Merkurth, under stones, 11.Y1.1993, 1 of (NHMS), leg. P. Beron \& B. Petrov.

Rlmarks

The identities both of the above sample and the name vodnatensis itself are quite obscure. The latter was introduced as based on a single holotype male from Wodnata Peschtera Cave, in the Tzerovo area (Isker-Defile), N Bulgatia. It wus initially described as a varicty of Glomeris norica Latzel, 1884, a species which in turn was originatly established as only a varicty of puszulata! Verhoeff (1926) also mentioned another male taken from the same cave together with the holosype of voduatensis, which he referred to as an "almose typical" norica. G. n. vodnatensis was said to differ by the body being entirely black, with traces of pale spots on the thoracic shield, pygidium and tergum 7, as well as by the thoracic shield bearing $1+2$ striae. This strice syntopy alone casts doubt on the validity of modinatensis, which perhaps explains why Verhoeff treated it as only a varicis.
Yet Strasser (1966) promoted vodnatensis to full species status and even regarded the Bulgarian G. pustulata diminuta Attems, 1951, as its junior synonym. Latzel (1884) characterized his var. norica as differing from pustulata by the often considerably larger transverse-oval tergal spots, two crossing striac on the thoracic shield and a small but evident tubercle on the pygidium of both sexes. This knob is sometimes known to be absent from pustulata, its presence being more characteristic of norica (see Latzel, 1884).
The Albanian specimen at hand displays a somewhat elevated number of striae on the thoracic shield: 1 very small anterior +1 complete + 3 incomplete posterior. Also, it has small reddish spots on all terga, a well-expressed caudal concavity but no tubercule on the pygidium. Yet considering the quite pronounced variation range in the size, colour and presence of pale spots on certain terga as well as in the number of striae on the thoracic shield, che presence of a knob on the pygidium, etc. (Latzel 1884; Attems
1959), coupled with the vast distribution of pustulata, ranging from NW Africa, the Iberian Peninsula and France in the west to the Balkans, Alps and Carpathians (with the adjacent plains of Germany, Poland, Hungary and Rumania) in the east, it scems better to attribute the above male to pustulata. In addition, this species has already been recorded in nearby Croatia and Slovenia, as well as in Bulgaria thus being new to the Albanian list.

Order CALLIPODIDA Bollman, 1893

Family Dorypetalidae Verhoeff, 1900

Dorypetalum trispiculigerum Verhoeff, 1900

Materlal examined. - Sarandë District. Ionian Coast, Borsh, under stones, 5.V.1994, 1 ô, 1 juv. + (NHMS); leg. I'. Stoev.

Remarks
Described from Corfu (= Kyrkera) by Verhoeff (1900) as a subspecies of degenerans (Latzel, 1884), the nominate form of which is currently known from Bosnia and Hetcegovina, Serbia, Macedonia, and Rumania, D. trispiculigerum has since become treated as a separate species restricted to Corfu and Epirus, NW Gseece (Strasser 1976). Moreover, Strasser (1976) noted certain variability in its gonopod structure, so the question arises as to whether this taxon is a junior synonym of the Bosnian degenerans bosniense (Verhoeff, 1897). A direct comparison of the types is thus desirable to solve this question. Our sample from Borsh, some 30 km from the terra typica, agrees very well with the original description and represents the first formal record of trispiculigerum in Albania.

Family Schizopetalidae Verhoeff, 1909
Callipodella fasciata (Latzel, 1882)
(Fig. 3A, B)
Material examined. - Shkodër District. Theth, $800-900 \mathrm{~m}, 28 . \mathrm{V} .1993,20$ ơ, 2 우 (NHMS), leg.
P. Beron (Nu. 556). - Bogë, 1000-1100 m. 5-9.VJ.1993, 1 s, 1 (ZMUM), les. P. Beron \& B. Petrov. - Buge, Maya Tchardakut, 1200 -1400 m, I.VI.1993. 1 O (NHMS), leg. P. Beron (No. 573). -Same locality, 1400-1800 m, 1.V1.1993, 1 ¢. 1 juv. $\%$ (NHMS), leg. P. Beron (No. 562).

Remarks

This Balkan (s.l.) specics has already been reporred from Albania (Artems 1929, 1959). New illustrations are presented here to depict its highly characteristic gonopod structure (Figs 3A, B).

Apfelbeckia woblberedti Verhoeff, 1909 (Fig. 3C-E)

Mattrial examined, - Shkodër District. Bogë, cave No. 25, 23. V. 1993, 1 6, 2 ㅇㅇㅇ (NHMS), leg. P. Beron \& B. Petrov (No. 555). - Hoe region, Daic, Cave Kravenices, 12.X1.1991, I \&. I juv. (NHMS), leg. N. Lanjev. - Same locality, 5.VI.1992, 4 है (NHMS). leg. S. Beshkov. - Hor region, near Shkodër Limac. cave, 100 m, 4.VI. 1992. 40 O (NHMS), Ieg. S. Beshkov. - Same locality, 6.VI.1992, 1 ò (NHMS), leg. S. Beshkov. - Zogaj, artificial gallery, 13.1V.1994, 1 d, 1 ㅇ (NHMS), 1 ó, 1 O (MNH , Cullection Myriapodes F 040), 18,19 (ZMUM), leg. S. Beshkov。

Rlimarks

This very large species has hitherto been reported only from the north of Albania. Because the original illustrations presented by Verhoeff (1909) show only separate details of gonopod structure, new drawings have been made from a typotype to display an entire gonopod (Fig. 3C-E). Like the type series taken at Reçi, most of the new specimens are from caves, though the general appearance of the creature is definitely rrogloxenic: it is darkly pigmented and with fully developed, black ocellaria.

Acanthopetalum (Acanthopelum) albidicolle
 (Verhoeff, J900)

Materlal examined. - Sarandë District. lonian coast, Himarë, cave, middle part, 4.V.1994, 2 ㅇ 9. several juv. (NHMS), leg. P. Stoev.

Remarks

Even with only male at hand, this species is easy to recognize, due to its characteristically pale col-
lum contrasting with the remaining dark body (Verhoeff 1900; Strasscr 1970). Hitherto known only from Corfu, Grecce, only some 40 km away from Himaré, this represents the first definite record of albidicolle in Albania. Strasser (1976) also reported it from Albania, but without mentioning any relevant material.

Acanthopetalum (Petalysium) carinatum
 (Brandt, 1840)
 (Fig. 3F-J)

Lysiopetalum comma Verhoeff, 1900, syn. n.
Lysiopetalum thessalonm Verhoeff. 1901, syn. n. Lysiopetalum macedonicum Verhoeff, 1923, syn. n. Lysiopetalum albanicum Verhocff, 1932, syn. n. Lysiopetalum comma janinense Verhoeff, 1932, syn. n. Lysiopetalum thessalorum lychnitis Verhoeff, 1932, syn. 1 .

Material examined. - Shkodër District. Bogë,
 leg. P. Beron S B. Petrov, - Same locality, Maya Tchardakut, $1400-1600 \mathrm{~m}$, 1.V1.1993. 1 of (NHMS), leg. P. Beron. - Theth, 800-900 m, 28.V.1993, 2 d © (NHMS), leg. P. Beron (No. 556),

Lushnja Districr. Diviaka Natural Park. Pimus balepersis and l^{\prime} pimed strand forest, 10.V.1995, 2 of ${ }^{\circ}$, 2 오, 4 juv. Pq, 1 juv. (NHMS), leg. S. Golovatch. P. Stoev \& B. Petrov.

Rrëshen District. Merkurth, under stones, 11.VI.1993, 1 o (ZMUM), leg. P. Beron \& B. Petrov.

Vlorë District. Near Dukati, 450 m , under stones, 11.V.1995, 1 ㅇ (NHMS), leg. S. Golovarch, P. Stocv \& B. Petrov. - Jlogorase Pass, S of Vlorë, 1025 m , strongly deteriorated Pinus stand, under stones. 11.V.1995, 1 ㅇ, 2 juv. 8 (NHMS). leg. S. Golovatch, P. Stoev \& B. Petrov.

Sarandë District. lonian coast, Dhërıni, 2.V.1994. 1 ơ, 3 juv. 오, 3 juv. (MNHN, Collection Myriapodes F 006), leg. P. Stoek. - Same locality, dry small cavern, 2-20 m in length, 3.V.1994, 2 우 (NHMS), leg. P. Stoev. - Berween Dhërmi \& Himarë, under stones, 30.V.1994.1 9 (NHMS), leg. P. Stoev.

Gjirokaster District. Gjirokaster, eastle, 6.V.1994. 1 ס., 1 juv. 9.2 juv. (NHMS), leg. P. Swev.
Korçë District. Pustec (Liqcua), artilicial gallery, 5.X.1994. 19, 1 juv. (NHMS), leg. P. Beron. Same locality, Cave Gubilishtero (Sinkhole), 6.X.1994, 1 juv. $\%$ (NHMS), leg. P. Beron \& T. Ivanova. - Pustec 1 (Maligrad), 5.XI.1994, 1 ㅇ (NHMS), leg. T. Ivanova, - Tren, Uikut Cave,
 T. Ivanova. - Lake Prespa, Maligradska peshtera

Cave. 5.X. 1994,1 (OHMS), leg. P. Beron \& T. Ivanova.

Tirana District. Tirana, Botanical Gardens, under srones, S.V.1995. 1 ठ̈. 1 juv. (NHMS), leg. S. Golovatch, P. Stocv \& B. Petrov. - Mt. Dajti, 20 km NE of Tirana. 1000 m , Fagus, Acer, ctc. forest, leaf liter, 9.V.1995. 10 , 1 it, 1 juv. (NHMS), leg. S. Golowatch, P. Stoev ix B. Petrov.

Librazhd District. Above Prenjas, 750 m , scrub on slope, 7.V.1995, 1 (NHMS), leg. S. Golovatch, P. Stoer \& B. Perrov.

Permet District. Petrani, complex of arrificial galleries, $300 \mathrm{~m}, 12 . \mathrm{V} .1995,1$ o (NHMS), leg. P. Stoev \& B. Perrov.

Remarks

The taxa listed in the synonymy have hitherto been referred to either as the carinatum-group (cf. Hoffiman 1972) or as Petalysium Strasscr, 1976, the latter as an independent subgenus as opposed to the remaining Acanthopetalum s. str. (see Strasser 1974; designation of carinatum as the rype species in Strasser 1976). Characterized first of all by the presence of a peculiar process (U in Fig. $3 F-\mathrm{J}$) on the gonopod femorite, this group seems fairly homogeneous and is also easily distinguished by the gonocoxal processes crossing each other in situ, the gonopod prefemur and femur combined being much longer than the acropodite, and the sternal triangles between the male legpairs 8 and 9 strongly swollen (cf. Serasser 1974). Yet, this group has been plagued by nomenclatural problems ever since the description of Lysiopetalum carinatum.
Brandt (1840) described his carinatum very poorly from some unspccified material from Dalmatia. Latcr, Latzel (1884) provided not only a finc catalogue, a fine redescription and proper illustrations of gonopod morphology, based on toporypes, bur he even indicated the exact provenance of Brandr's type samples. Verhoeff (1923) also studied a good number of additional topotypes (some of which, all females, are housed in the MNHN collection), providing further illustrations of gonopod structure and comparing it with those of some especially closely related taxa. As a result, the identity of curinatum can be considered as fixed with a fair degree of certaincy. What strikes one immediately, when studying and comparing the relevant literature and drawings, is the fact that all above Verhoeffian taxa differ vir-
tually solely in the degree of expression of the gonofemoral uncus (U). In albanicum and thessalorum, U is almost straight, while in carinatum, macedonicum and, especially, comma it is strongly
unciform (cf. Verhoeff 1932, sub oncos). At first, even Verhoeff $(1899,1909)$ lumped all his samples deriving from Bosnia, Hercegovina, Dalmatia and Albania under carinatum, as did

Fig. 3. - Gonopods of Callipodella lasciata (Latzel, 1882), of from Theth (A-B); Apfelbeckia wohlberedti Verhoeff, 1909, of from near Bogë (C-E), and Acanthopetalum carinatum (Brandt, 1840), of of from Merkurth (F, mesal view) and Dhërmi (G-J, various aspects). Scale bar: 1.0 mm (A, B, F-J) and 2.0 mm (C-E).

Manfredi (1945) for her few Albanian specimens of Acanthopetalum (also suh Lysiopetahm). Having revised most of the relevant types, Hoffiman (1972) questioned the status of albanicum, thinking it might even represent the same population as lychnitis, stressing thar both raxa scarcely differ from thessalorum. Besides, Strasser (1976) suggested that jamineuse would be better regarded as a variery, rather than as a subspecies of commu.
All available evidence, including the material at hand, leads to the conclusion that we in fact face only a single variable species, carinutum by priority. Hence the above new synonyms. Variations mainly concern body size and. especially, the shape of U, the latter ranging from relatively small and straight (eg. var. albnuicum) to particularly large and strongly curved (var. comma). Figure 3F-J shows almost the entire known variation range of U shapes.
Contrary to Hoffman (1972), who believed in a north-south gradient in size increase of the gonofemoral process, there seems to be no coherent pattern in the distribution of U slapes, except that they are relatively constant micro- rather than macrogengraphically, This is evident from the Albanian samples alone. Thus, in the north (e.g. ar Bogë), U resembles that depicted by Verhoefl (1932) for thessalorutn lychnitis or comma, only a lictle longer and more strongly curved. At neighbouring therh, U is even longer. On the other hand, ar Merkurth (Fig. 3F), Diviaka and some other places, U is more or less simple and triangular, displaying a condition somewhat intermediate between thessalorum, which is known also from Valona (Vlorë), Albania, and Macedonial, and allonnicum, which has also been reported from Albania and Macedonia. At Dhërmi (IVgs 3G-J), U is S-shaped, much as in comma, which has hitherto been recorded only in Epirus and Cortin, anel macedunicum, the latter known from Macedonia within both ex-Yugoslavia and Greece. In the south of Albania, at Gjirokaster or Detrani, U is again thessalorum-like.
Of course, to distinguish populational/microgeographical variability from the individual one, has more materials to be collected and considered throughout the Petalysiunlearinutum range. This remains a challenge for future investigations.

Ecologically, this also seems to be a quite homogeneous group, which is not present in caves, except by chance (trogloxenic, see Strasser 1974). As regards the gengraphical distribution of tarinuttum, it is quite vast and coherent, being confined mainly to the western part of the Balkan region and ranging from the Rijeka Gulf, Slovenia; in the north down to Corfu and Epirus, Greece, in the south (see Strasser 1974), also being recorded in Macedonia as well as in Bulgaria (Ceuca 1973).

Acanthopetalum subpatens n.sp.
 (Fig. 4)

Matlekal bxamined. - Leskoviku District. Cave on the ruad l'ermet-Leskaviku, 5 km before Leskowiku, $9(0) \mathrm{m}, 12 \mathrm{~V}, 1995$, holotype of (NHMS), leg. P. Stoev \& B. Perrov; paratypes together with holotype: 2000.1 . 9 (NHMS): 10.18 (MNHN, Collection Myriapodes F 015), 1 of, 1 (Z M(TM). -Same locality, 1.V1.1994, 3 ơ oै, 1 juv. o (NHMS), leg. T. Ivanova.

ETMMoLogr. - Name emphasizes the especially close relationship with patens.

Diacinosis

By its bifid solenomerite and the somewhat serrate nuter margin of its tibiotarsus, subpatens approaches furculigerum Verhoeff. 1901, from Crete, with the very closely related species or even subspecies patens Serrasser, 1973, described from Epirus, Greece, and albitlicolle Verhocff, 1900 (see alove). However, is differs from these in the generally smaller body size (less than 45 mm in length, lesser number of body segments (45 w, 46), shape of the male coxa 7; as well as in the lack of gonopod process ha (seensu Straster 1973. 1976), present in furculigerum s.l. (see review by Srasser 1976), and from albilicolle by the dark collum and some minor details of gonopod structure (see Verhoeff 1900).

Descripton

Lengrh of adults $32-42 \mathrm{~mm}$, width $2.0-3.0 \mathrm{~mm}$, regardless of the sex; length of holotype $c, 42 \mathrm{~mm}$, height of midbody somite 3.0 mm , width 2.8 mm . Most often forty-five body segments, only rarely forty-four (one female).

Coloration in alcohol pale to rather dark grey-brown-reddish, delicately marbled, with a rather indistinct, small, rounded, pale yellowish to reddish spot anteroventrad of ozopores, also with a similar but even smaller, subtriangular, dorsomedian spot ar bottom of a shallow suture between pro- and metazona. Axial line poorly visible. sometimes slighty paler than background. Head and antennae darker, brown, vertex and genae especially strongly marbled; eye patches blackish. Boch front and caudal ends a little darker than the rest of body. Sometimes caudal margin of metazona narrowly blackish. Legs yellowish to reddish. Juvenite particularly pale.
Ocelli rather poorly convex yet evident, arranged in rows of $7+7+7+6+5+4+3+2+1$ in adults. Frons densely serose, very strongly flattened and even slightly concave (male) or faintly convex (female). Antennae long, slender, in situ surpassing somite 5 (male) or 4 (female). Body
segments slightly compressed laterally. Collum and somite 2 costulate only laterally, virtually smooth dorsally. Subsequent somites typically densely costulate all over circumference, midbody metazona with furty-eight evident sibs, prozona distinctly striate/ribbed, only suture in hetween smooth. Surface dull. Tergal setae dorsal and dorsolateral in position, relatively short, ca. one third as long as merazonital Iength only on a few anteriormost and posteriormost terga, inbetween even shorter, often abraded; pattern as $6+6$ or $5+5$ on collum and somites $2-4$ in a single median row, alternatively $3+3$ and $3+3$ on somites 5 and 6 in two rovs (one closer to suture, the other near caudal margin), thereafter $6-7+6-7$ in a single caudal row. Ozopores small but evident, starting from somite 5, each opening behind a small knob.
Legs relatively long, about as long as midbody height, especially densely setose ventrally, with

Fig. 4. - Acanthopetalum subpatens n.sp., ठ paratype: A, coxa 6, caudal view (drawn not to scale); B, coxa 7, caudal view (drawn not to scale); C-F, gonopod, various aspects. Scale bar: C-F, 0.5 mm .
ventral brushes on male tibiae and pretarsi until about posterior $1 / 3$ of the body, gradually thinning out thereafter: male coxae 3-6 each with a distinct ventromedian tooth (Fig. 4A), male coxa 7 with a very low, rounded lobe before a similar tooth (Fig. 4B); male postgonopodal prefemora each with a distinct laterobasal swelling.
Gonopods (Fig. 4C-F) rypical for the genus, coxal process (pr) not acuminate, solenomerite (sl) bifid, tooth (z) at its base small, tibiotarsus slightly striate mesally and serrate at incurved outer margin, tooth (e) strong but short, process (h) short and blunt, fold (p) gently rounded.

Acanthopetalum sp. inder.

Material, Lxaminfld. - Librawh District. Between Hotolishr and librazhd, 300 m , scrub, gravel, under stones and bark, 7.V.1995, 5 9 9, 1 juv. P, of two distinct colour parterns (NIIMS), leg. S. Golovatch, P. Sroev \& B. P'etrov. - Above Prenjas, 750 m , scrub on slope, 7.V.1995. 1 ㅇ, 1 juv. 우 (NHMS), leg. S. Golovath, P. Stoev \& B. Petrov.

Shkodër District. Alpet Mt. Rhadohimës, 1900-2200 m, 28.V.1995, 1 오 (NHMS), leg. ${ }^{1}$. Beron.

Remarks

In the absence of adult male, these samples could not be identified to species.

Order CHORDEUMATIDA C. L. Koch, 1847
 Family Anthroleucosomatidae Verhoeff, 1899

Anamastigona albanensis n.sp.

(Figs 5, 6)
Material examined. - Tirana District. Petrcla, $c .15 \mathrm{~km}$ SF. of Tirana, 350 in , scrub, puins, under stones, 9.V.1995, holotype ot (NLHMS), leg. S. Golovatch. P. Stocv \& B. Perrov: pararypes together wirl holorype: 2 ob 0,1 여 (NHMS), 10 (MNHN, Collection Myriapodes DA 254), 1 o (ZMUM).

Efymology - Name emphasizes the fact that this is the first species of this genus to be reported from Albania.

Diagnosis

Differs from congeners mainly by particularities in the gonopods and paragonopods structure, especially the median piece of the former and the telopodire of the latter.

Description

Body with thirty segments in both sexes. Head, collum, telson and metazona brown, with a pair of somewhat paler small dorsal spots between macrochaetae; prozona grey; genae and distal halves of legs pale brown; basal halves of legs pale.

Measurements (in mm) and number of ocelli:

	Lenglh	Horizontal diameler	Vertical diameler	Lengih of antenna	Ranks of ocelti
\& holotype	11	0.95	0.85	1.6	7 (1234321)
3 paratype	11.5		0.80	14	6 (123432)
उ -	12		0.75	1.3	6 (223432)
\$ -	11		1	1.7	$6(123432)$
d -	11.5		0.90	1.55	5 (12343)
오 -	12.5		1.05	1.75	7 (1234321)

Vertex regularly convex in both sexes; antennae rather slender, antennomere 6 c. 6 times as long as wide; gnathochilarium with a transversely divided mentum; cheeks globular. Eye parches black, triangular, each with a reduced number of ocelli (13-16) arranged in 5-7 rows.
Collum semi-lunar, with a moderately strongly concave posterior margin and $3+3$ shout macrochactae (half as short as those on midbody segments). Dorsum sligholy convex. Merarerga (Fig. 5) from each side with two little dorsolateral swellings neatly separared by a lateral longitudinal sulcus (q). Latter oblique, lying dorsad frontally and more ventrad caudally, separating lareralmost (and most convex) boss which supports on its dorsalmost part (adjacent to sulcus) both external macrochaetae, anterior and posterior, from medianmost boss. Later poorly convex, subcircular in shape, Ientiform, lying rather far from axial suture and supporting a median macrochaeta by its anteromedian part. Macrochaetae long and arched; median one a little longer than others, almost half as long. as toral width of merazonite. Distance between
median macrochaera and axial line abour twice as great as that between it and anterolateral macrochaera, and almost 4 rimes as great as that berween borh external macrochaetae, angle being $110-120^{\circ}$, Telson wirhout particulars. Walking legs a little longer than vertical diameter of a midbody somite.

Male

Male pregonopodal legs (pairs 3-7) clearly incrassate due to prefemora and femora as compared to others, tarsi patticularly long and slender (Fig. 6A, C). Tarsal papillae absent. Coxal glands present on male pairs 10 and 11 (Fig. 6B, C), coxa 11 with a peculiar distoventral process.
Gonopods (Fig. 6D-G) rather strongly differing in strucrure from those observed in other fifteen congeners known to date: unpaired part (v) very strongly reduced to a small, simple, barbed, trapeziform lohe flanked by two robust, elongated and arched processes. Anterior process (a) a little
longer, more external, bearing a basal spur (r), slightly denticulate in its distal one third on caudal side. Posterior process (b) arising laterobasally of (v), subdivided distally into arched spinularions. Boch processes (a) and (b) apparently closely atrached to each orher normally, each with an apical hyaline lobe more or less serrate as margin. More basally, process a supplied with a laterobasal tooth (remnant of telopodite) (t), and process b, flanked by a large, well-visible, caudal lobe (u). All these elements placed on a large sternum, frontally carrying a pair of swellings (s) partly masking spurs r of process a.
Paragonopods (Fig. 6H) quite typical for the genus, having two paramedian, membranous processes and two long, arched, lateral arms, but strongly resembling Bulgarosoma crucis Strasser, 1960, in having no traces of a telopodital knob (only pigmented spots in its stead), and in the presence both of a hyaline rectangular lamella at its three quaters extent and denticulations on the internal side of its distal one quater extent.

Fig. 5. - Anamastigona albanensis n.sp., ô holotype, somite 15, A, dorsal view; B, frontal view. Scale bar : 0.1 mm.

Female

Coxa 2 (Fig. 6I) with an evident glandular outgrowth distoventrally.
Vulvae of Anthrolcucosomatidae s. /. have hitherto been illustrated only very seldon (Persedicus mattensi Mauriès, 1982, From Iran and Talysh Mes, A\%erbaijan, and Haasiat largescutatum (Strasser, 1935), from Slovenia), and never in the genus Anamnstigona. Figure 6J shows the right vulva of the sole female at hand. Bursa typical for Chordeumatida, i.e. strongly clongated, valves symmetrical, pilosity very strongly reduced, with only a few setae sparsely dispersed on external valve and, especially so, only retained anteriorly on internal valve. Ampulla and suture visible mostly anteriorly, outlined by sinuous lips/contours. Operculum poorly emarginate distally.

Remarks

The Anthroleucosomatidae s. str. as we conceive of it, consists of three groups of genera, each group probably warranting the recognition of a separate subfimily. The first is composed of Alloiopus Attems, 1951, I'ersedicus Mauriès, 1982, and Ghiharovia Gulicka, 1972; the second of Anthroleucosoma Verhoeff, 1899, Heteranthrolcucosoma Cenca, 1964. and Ditcosoma Tabacara, 1968; and the third of Anamastigona Silvestri, 1898, Bulgarosoma Verhoeff, 1926, Caucaseuma Strasser, 1970, Adshardicus Golovatch, 1981, and Rateheuma Golowatch, 1985. The latter two Caucasian genera may well prove to be junior synonyms of Caucasemma, but chis problem seems better deferred urtil the extremely rich anthroleucosomatid fauna of the Caucasus is more fully deseribed. On the orther hand, the allocation of Bulgardicus Suasser, 1960, to this family is doubrful (cf. Hoffman 1980).
We here interpret Amamastigona in a somewhat broader sense than Hoffman (1980), adding also Paraprodicus Verhoefii, 1940, a caxon heretofore

Fic. 6. - Anamasliguna albanensis n.sp., ḋ holotype (A-H) and I paratype (1-J): A, leg 7: B, coxa 10, caudal view; C, leg 11, caudal view; D G. gonopods (P,B), mesocaudal (ot anterior and posterior processes), laterat, oral, caudal views, respectively; \mathbf{H}, paragonopods (P.9), oral view; I, ㅇ coxa 2; J, vulva, ventral view. Scale bar: 0.1 mm .
considered as a separate genus, to the list of its synonyms or subgenera (rogecher with Antrodicus Gulicka, 1967, Balkundicus Strasser, 1960, Hellasdicus Verhoeff, 1940 and Osmandicus Strasser, 1960).

Anamastigona (?) sp.

Material examined. - Shkodër District. Bogë, 1000-1100 m, 5-9.VI. 1993, 1 juv. ㅇ (28 segm.) (NHMS), leg. 1'. Beron \& B. Perrov (No, 581).
Tirana District. Mtr. Dajti, c. 20 km NE of Tirana, 1000 m , Jiguss, Acer, ecte. forest, leaf litter and under bark, 9.V.1995, I 5 (NHMS), leg. S. Golovatch, P. Stnev \& B. Petrov.

Remarks

In the absence of adult male, this material could not be identified to species. Even its generic attribution of the juvenile is doubtful, while the female seems to represent albauensis.

Melogona broelemanni Verhoeff, 1897
Material examined. - Tirana District. Me. Dajti, $c .20 \mathrm{~km}$ NE of Tirana, 1000 m , Fagus, Acer, etc. furest, leal litter and under bark, 9.V.1995, 1 O (NHMS), leg. S. Golovatch, P. Stoev \& B. Petrov.

Remarks

This Balkan-Carparhian species has already been reported from Albania (Atrems 1929).

Chordeumatida gen.sp.?

Material examined. - Shkodër District. Bogeé, upper camp, $1900 \mathrm{~m}, 22 . \mathrm{V} .1993,1$ juv. ठ (28 segm.) (NHMS), leg. P. Beron. -- Same locality, cave No. 25, 23.V.1993, 8 우우, 3 juv. (NHMS), leg. P. Beron \& B. Petrov (No. 577).

Remarks

In the absence of adult males, shis large, depigmented, probably troglohitio species could not even be identified to family. Apparently, it represents a new antholeucosomatid gents and species still to be described from already available males deriving from the same area (W. A. Shear, pers. comm.).

Order POLYDESMIDA Leach, 1815

Family Polydesmidae Leach, 1815

Brachydesmus herzogowinensis Verhoeff, 1897

Majerlal examinfed. - Leskoviku District. Cave on the road Permet-Leskoviku, 5 km before Leskoviku, $900 \mathrm{~m}, 12, \mathrm{~V} .1995 .1$ o, 4 9 오, 40 juv . (NHMS), 1 d, 1 q, 10 juv. (MNHN, Collection Myriapodes JC 296), 1 ó, 299,10 juv. (ZMUM), leg. P. Stoev \& B. Perrov.

Remarks

Somewhat misspelt since its original description, either as bercegoninensis or as berzegowinensis, this species has hitherto been reported from Albania, Montenegro and Cherso (see Attems 1959). However, as the earlier record by Attems (1929) referred to Hercegovina and Montenegro (see also Strasser 1976), the above is the first confirmed discovery of B. beragonomensis in Albania proper. Numerous "subspecies" of herzogowinensis, the validity of which is highly doubtful, have since been described, notably from Bulgaria, Serbia, Croatia and Slovenia. Hence the range of this species covers much of the Balkan Peninsula.

Brachydesmus (?) sp.

Material examined. - Sarandë District. Ionian coast, Borsh. under stoncs, 5.V.1994, 3 juv. ot ${ }^{2}$ (subadults. 18 segm.) (NHMS), leg. P. Stocv.
Shkodër District. Bogë, 1000-1100 m, 5-9.VI. 1993, 1 juv. © ($18 \mathrm{segm}$.) (NHMS), leg. P. Beron \& B. Perrov (No. 581). - Alpet Mr. Rhadohimës, 2200-2400 m, 29.V+1993, 2 우우 (19 segm.) (NHMS), lieg. P. Beron (No. 599).

Remarks

In the absence of adult male, no closer identificarion could be possible.

Polydesmus herzogowinensis Verhoeff, 1897

Materlal exumined. - Shkodër District. Bogë, Maya Tchardakut, 1200-1400 m, 1.VI.1993, 1 ¢ (NHMS), leg. P. Beron.
Leskoviku District. 5 km from L.cskoviku, 1.VI.1994, 1 o (NHMS), leg. P. Tenchev.

Remarks

This Balkan species has already been recorded in

Albania (Attems 1929), yet almost always misspelt since the original description (Verhoeff 1897), mostly either as hercegovinensis or beraegowinensis. Also, there might be a nomenclarorial problem if Bradordesmus is formally rreated as a subgenus of Polydesmus (e.g. Hoffman 1980), because in the same paper, Verhoeff (1897) also described a Brachydesmus beragowinensis (see above). If merged under a single genus, one of these species would have to be renamed to avoid homonymy and conform to the rules of priority. For the time being, however, we prefer to keep both names concerned in separate genera.

Polydesmus mediterranctus oertzeni Verhoeff, 1901

Materlal examined. - Tirana District. Tirana, Botanical Gardens, 8.V.1995, 1 \% (NHMS), leg. S. Golovatch, P. Stoev \& B. Petrov.

Remarks

This east Mediterranean subspecies ranges from the Balkan Peninsula in the west to the Crimea, W Caucasus and W Anatolia in the east, and seems to have already been recorded in Albania sub mediterraneus Daday, 1890 (Manfredi 1945).

Polydesmus (?) sp.

Material examined. - Shkodër District. Above Boge, 1500 m. 18.VI.1994, 1 juv. ㅇ (NHMS), leg. T. Troanski.

Sarandë District. Ionian coasr, Dhërmi, under stones, 2.V.1994, 2 juv. (NHMS), leg. P. Stoev.

Remarks

In the absence of adults, it has been impossible to determine these samples to species.

Polydesmidae gen. sp.
Matlelal. examinem: - Sarandë District. Ionian coast, Dhërmi, 100 m , leaf litter, $11 . \mathrm{V}, 1995,5$ juv. (NHMS), leg. S. Golovatch, P. Stoev \& B. Berrov.
Librazhd District. Berveen Hotolisht and librazadh, 300 m , scrub. gravel, under stones and bark, 7.V.l9リs, 1 (20 scgm.) (NHMS), leg. S. Golovatch, P. Stoev \& B. Petrov.

Remarks

In the absence of adult males, it has been impossible to identify these samples to species or even genus.

Family Paradoxosomatidae Daday, 1889

Metonomastus petrelensis n.sp.

(Fig. 7)
Materlal examined. - Tirana District. Petrela, $c .15 \mathrm{~km}$ SE of Tirana, 300 mm , artificial galleries near road, 9.V. 1995 , holotype of (NHMS). Seg. P. Stoey \& B. Perrov; paratypes ingerher with holorype: 6 웅 (NHMS), 1 b, 2 우 (MNHN, Collection Myriapodes JA 123), 1太, 2 우 (ZMUM).

Etrmology. - Name derived from Petrela, the type locality.

Diagnosis

Differs from congeners by the gonopods consisting of two long, slender, subequal branches, of
which the solenomerite is unciform apically, and the cibiotarsus is particularly simple (see also key below).

Description

Body with ninereen segments in both sexes. Female considerably larger than male.. Length of male 5.65 mm (holotype), of females $6.90-7.85 \mathrm{~mm}$; female dimensions as follows: length 7.80 mm , width of head 0.70 mm , length of antenaae 1.25 mm , width of collum 0.52 mm , width of somite 100.70 mm on metazonite, 0.65 mm on prozonite.
Habitus usual for the genus, body pallid throughour, slender and moniliform. Pore formula normal (5.7.9.10.12,13-17).

Head globular, a litele broader than metaterga (0.60 mm in holorype), covered with sparse, unequal setae. Antennae medium-sized (1.2 mm in holotype), length ratios of antennomeres $3>2=6>5=4<7 \gg 8$, the sixth being widest, subcylindrical and 1.5 times as long as

Fig. 7. - Metonomastus petrelensis n.sp., of holotype: A-C, right gonopod, oral, lateral, and mesal views, respectively; D, femur 4, ventral view. Scale bar: 0.1 mm .
wide; antennomeres 2,3 and 4 distinctly claviform. Collum a little narrower, 0.45 mm in width.
Metaterga (width 0.55 mm in holotype) with surface very delicately shagreened. Paraterga poorly developed, lateral margin regularly arched in dorsal view, always with three setac; dorsal surface convex, with moderate pilosity arranged in two rows, both consisting of $4+4$ thin and short setae (paratergal setac included). An incomplete row, comprising $1+1$ or $2+2$ similar serae laterally, also located a little in front of marginal row. Ozopores placed ar posterior angle of paraterga. Telson as usual for the genus.
Pregonopodal legs without particulars, except femur 4 with a trichobothrium-like seta on ventral side (Fig. 7D),

Gonopods (Fig. 7A-C) relarively slender, suberect. Prefemur a subquadrate plate (in oral or
caudal view). Hattened, oral surface setose. Postfemoral region consisting of only two branches, both simple, slender and arched: solenomerite (s). mesal in position, indistinctly sinuous and spinulose distally, a litule more robust and shorter than the particularly slender, apically unciform tibiotarsal branch (t) proper.

Remarks

The genus Metonomastus Atterns, 1937 (= Microtesmus Verhouff, 1901, nom. patercut., see Jeckel 1970), has hitherto been known to coinprise nine species or subspecies scattered from (mainly) laty in the west to Anatolia in the cast. Only a few appear to be cavernicolous, petrelensis obviously being one of these. Long reported also from Bosnia and Hercegovina, as well as from Greece, this genus is here recorded in Albania for the first time.

GONOPOD-BASED KEY TO DISTIN(UISH petrelensis FROM ITS RELATIVES

1. Gonopod prefemur suboval and considerably shorter than postfemoral elements
—Prefemur subquadrate and about as long as postfemoral elements 2
2. Three postfemoral elements M. strasseri Hoffman et Lohmander, 1968: Turkey M. strasseri atticus Strasser, 1974: Greece
— Two postfemoral elements .. 3
3. Postfemoral elements of two subequal, slender and sinuate branches
M. petrelensis: cave in Albania

- Postfemoral elements stouter, not equal in length/width
M. hirtellus (Silvestri, 1903): Umbria (Italy) M. caprede (Verhoeff, 1942): Capri (Italy) M. patrizii Manfredi, 1950: cave in Umbria (Italy) M. romantis (Verhoeff, 1951): Latium (Italy) M. mariae (Strasser, 1965): cave in Abbruzzi Mts (Italy)

The male of M. bosniensis (Verhoeff, 1901), is unknown.
Microdesminus saetosus Strasser, 1960, from Italy, differs readily from Metonomastus by its abun-
dant tergal pilosity and gonopod structure, the latter, due to two unequal branches of the tibiotarsus, resembling certain Polydesmus.

Order JULIDA Leach, 1815
Family Blaniulidae C. L. Koch, 1847

Nopoiulus kochii (Gervais, 1847)

Maffrial examined. -- Lushnja District. Divjaka Natural Park, Pinus balepensis and P. pinea strand forest, litter and under stones, $10 . V, 1995,4$ juv. (NHMS), leg. S. Golovatch, P. Stoev \& B. Petrov.

Remarks

This ubiquirous anthropochore has long been reported from Albania (Attems 1959), though without exact provenance.

Family Julidae Leach, 1815

Leptoiulus macedoricus (Attems, 1927)
Material examined. - Shkodër District. Above Bogë, Alpet Mt. Rhadohimës, 2400-2550 m, 29.V.1993, 1 oै (NHMS), leg. P. Beron.

Tirana District. Mt. Dajti, c. 20 km NE of Tirana, 1000 m , Fagus, Acer, etc. forest, litter and under stones, 9.V.1995. 1 o (NHMS), leg. S. Golovatch, P. Stoev \& B. Petrov.

Remakks

This species has hitherto been known only from Macedonia (Attems 1927, 1929), the above being the first definite record of matedonicus in Albania. Strasser (1976) also reported it from Albania, yet mentioning no relevant material.

Leptoiulus trilineatus (C. L. Koch, 1847)
Materlal examined. - Librazhd District. Between Horolisht and Librazhd, 300 m , scrub, gravel, under stones and bark, 7.V.1995, 2 juv. $8 \circ$ (NHMS), leg. S. Golovatch, P. Stoev \& B. Petrov. - Above Prenjas, 750 m , scrub on slope, 7.V.1995. I of (NHMS), leg. S. Golovatch. P. Stoev \& B. Petrov.
Tirana District. Me. Dajti, c:20 km NE of Tirana, 1000 m , Fergets, Arer, cle forest, leal liter and under stones, 8.V.1995, 1 d. 2 jume d d, 1 juv. (NHMS), leg. S. Golovatch, 1'. Sioev \& B. P'etrov.
Lushnja District. Divjaka Natural Park, Pinus balepetsis and P. piners strand fores, 10.V.1945, 24 juv. (NHMS), leg. S. Golovatch, J'. Shev \&e B. Penov.
Vlorë District. Near Dukati, 450 m , leaf litter, $11 . V_{1} 1995,2 \delta \delta^{3}, 14$ 9오, 34 juv. (NHMS), leg. S. Golovatch, P. Stoev \& B. l'etrov.

Sarandë District. lonian coast, Dhërmi, under
stones, 2.V.1994, 1 ¢ (NHMS), leg. P. Stoev. Same localisy, 100 m , leaf litter, 11.V.1995, 1 오, 1 juv. J, 21 juv. (NHMS), leg. S. Golovatch, P. Stoer \& B. Petroy.

Leskovik District. 5 km from Leskovik, I.Vl.1994, 1 o (NHMS), kg. P Tencher.

Remarks

This Alpine-Balkan-Carpathian (s.l.) species has long been reported from Albania (Attems 1929), where it appears to be quite common.

Leptoiulus sp.

Materlal examined. - Shkodër District. Bogë, Maya Tchardakur, 1200-1600 m, l.Vl.1993. 2 오오, 2 juv. ठठ 0,3 juv. 99 (NHMS), leg. P. Berou. Above Bogë, Alpei Mr. Rhadohimés, $2400-2550 \mathrm{~m}$, 29.V.1993, 1 오 (NHMS), leg. P. Beron (No. 578).

Rfmarks

In the absence of adult males, these samples could not be identified to species.

Typhloiulus beroni n.sp.
 (Fig. 8)

Material examined. - Korçë District. Pustec (Liqena), artificial gallery, 5.X. 1994 , holotype ठ (NHMS), leg. P'. Beron; paratypes together with holo-
 (MNHN, Collection Myriapodes F.B 070). 2 ठे ${ }^{\circ}$ (7.MUM).

Etymology. - Name honours Dr. Petar Beron, who collected this (and many other) species.

Diagnosis

Differs from congeners by a peculiar combination of non-modified mouthparts, unciform epiproct, and cerrain details of gonopod structure (sec also remarks below).

Description

Body of adults wirh forty-five (four apodous) to fifty-five (two apodous) segments, excluding telson, in male, and fifty-iwo (two apodous) and fifty-five (two apodous) segments, excluding telson, in fenales, "Ihe largest juvenile female with forty-six (five apodous) segments, excluding telson. Holotype with fifty-bhree (three apodous) segments, excluding telson. Length usually 25-26 mm regardless of the sex, rarely from
$c .20 \mathrm{~mm}$ (male with forly-five segments) up to $c .29 \mathrm{~mm}$ (male with fifty-five segments). Midbody width usually 1.0 mm , height 1.5 mm in males (including holotype), 1.3 and 1.7 mm , respectively, in females; body therefore stender and considerably compressed laterally. Coloration in alcolsol from pallid grey-yellowpinkish to dark brownish-bronzed.
Head without particulars except for eye patches pallid and scarcely discernible due to faint rugosity, labrum with usual three large median teeth, vertigial setae $1+1$, supralahral ones $2+2$, labral ones $8+8$. Antennae (Fig. 8A) always pallid, slender, rather long, in situ alonost reaching the end of somite 4 (male) or 3 (female, juv.), antennomeres $5-6$ each with is terminal corolla of more (fifth) or less (sixth) large, bacilliform sensitlac. Gnathochilatium (Fig. 8B) without peculiaritics. male checks not enlarged.
Collum with large, rounded, striated flaps laterally, bare dorsally, with $5+5$ long setae near caudal margin. Postcollat constriction very poorly developed, subsequent segments with equally long tergal setae tending to increase in length dorsally (c. 1/8-1/9 as long as midbody height) and in number caudally, first also $5+5$ and then gradually up to 15-16 $+15-16$ on caudalmost somites. Body surface almost dull; prozona very delicately, sparsely and obliquely striate laterally, bare dorsally; metazona strongly, rather ecgularly and relatively densely striate longitudinally all over their circumference, $i n$. four striat in a conventional square with side equal to metazonital length just bclow ozopore. Suture between prozona and metazona thin bur evident, constriction weak, Ozopores rarher distinct, lying behind, quite close ro yer not touching the suture. Telson especially densely setose, epiproct characteristically unciform distoventrad (Fig. 8C), anal valves very fainrly margined caudally, subanal scale subtriangular.

Male pleurotergum 7 (Fig. 8D) with a distinct, almost pointed, distomarginal tooth directed somewhat obliqucly caudally. Legs long, slender, a little over one half as long as midtoody height; claws charactcristically long, slightly curved, with a minute vencrobasal toorh. Male legpait 1 (Fig. 8E) as usual reduced, unciform, setose;
pair 2 (Fig. 81 ${ }^{\circ}$) with fuscd coxae and peculiar ventral pads on postfemora and tibiae; pads on subscquent malc postfemora tending to rapidly disappear already roward several postgonopodal legpairs; pads on male tibiae gradually disappearing only towards caudal one third of body. Penes behind malc Icgpair 2 without peculiarities, slender, clearly bifid.

Gunopods (Fig. 8G) rclativcly slender, with both meso- and, especially, promerite only slightly shorter than opisthomerite. Promerite (pr) spatulare, about 4 times as long as broad, slighty concave and tuberculate-rugose in distal rwo thirds for accomodation of an anterodistally convex and similarly cuberculare-rugose mesomeritc (ma), with a long, normal flagellum ar base; parabasal internal lobe (i) well-expressed, with threc strong sctac; parabasal cxternal lote ($=$ remnant of telopodite) (e) subovoid, somewhat smatler in size than i. Opisthomerite (op) with subequal, relatively small, velum (ve) and solenomerite, former supplied with a frontal, subapicat, flagellar ourgrowth, which is delicately barbed apically and catries an additional, antcrodistal, hyaline, median lamella.

Remarks

The type series contains a peculiar, obviously abnormal male (now in MNHN) which has not one bur two pairs of gonopods placed - judged from the cypically shaped pleuroterga - inside rwo, superficially normal, somites 7 and 8 . The specimen was left intact, non-dissected, and not examined for furrher terarological derails.
The prolific "tribe" Typhloiulini is curtently divided into rwo matin subgrothps. one possessing a flagellum on the promerite (male P.8), and the other one lacking it. The former subgroup encompasses 'Typhloinhus Latzel. 1884 (with a good number of subgenera), I.eptotyphloimlus Verhoeff, 1899, Mpityphlus Strasset, 1967, Buchneriar Vethoeff, 1941, and Mesoporoiulus Verhoeff, 1905, while the latter group the genera Troglaiulus Manfredi, 1931, and Serboiulus Strasser, 1962. Generally, they range from the Maritime Alps, SE France and laly io the west to the Carpathian Mts in the east, centering in and slightly north of the Balkan Peninsula.

Fig. 8. - Typhloiulus beroni n.sp., ${ }^{*}$ paratype: A, antenna; B, gnathochilarium; C, epiproct, lateral view (drawn not to scale); D, pleurotergite 7; \mathbf{E}, legpair 1, oral view; \mathbf{F}, leg 2, oral view; \mathbf{G}, gonopod complex, mesal view. Scale bar: $0.2 \mathrm{~mm}(A-F)$ and 0.1 mm (G).

Several typhloiuline species are troglobionts, others are largely presumed petro- and/or geophiles, hence virtually all are eyeless, mostly more or less strongly pallid, often long-legged, and sometimes have strongly modified mouthparts. However, all these characters are basically highly adaptive, reflecting the mode of life rather than common ancestry. For this reason alone, the Typhloiulini is highly suspicious as a taxon, this fact having long been acknowledged in the literature (eg. Strasser 1962; Hoffinan 1980).
As usual in diplopod systematics, it is gonopod structure that appears most instructive in untavelling the real phylogenetic relations between the consituent typhoiulinc species and genera as well as of the Typhloiulini as a whole with other tribes. Basically, there are no apomorphies whatever in typhloiulines which would distinguish them from the sympatric yer somewhat more widely distributed, Euro-Meditertanean tribe Leptoiulini. Indeed, the entite variation range of cyphloiuline gonopod structure (presence/absence of a flagellum, promerite shorter/longer vis-
à-vis meso- and/or opisthomerite, degree of development of a velum, etc.) definitely lies within that of the leptoinulines. So we must simply admit the existence within the single (very large, but really natural) tribe Leptoiulini of rather numerous, ofren apparently polyphyleric representatives displaying clear-cut adaptations to troglo-, petro-and/or geophily. In other words, we are inclined to formally abandon the Typhloiulini and to suppress it under the Leptoiulini (cf. Strasser 1962; Hoffinan 1980).
The genus Typhloiulus Latzel, 1884, has hitherto been known to comprise thirty-four described (and a fow still undescribed) species or subspecies (several based solely on females) ranging from Italy in the west to Rumania and Bulgaria in the east. Its subgenera Typhlaiulus s, str. $C=$ Xestotyphlainhus Verthoeff, 1899, = Smeringolopphus Attemss, 1959). Stygiuhlus Verhoeff, 1929, Attemsatyphlus Strasser, 1962, Haploprotopus Verhoeff, 1899, Spelaeoblaniulus Ceuca, 1956 ($=$ Spelacoiulus Strasser, 1962), Inversotypplus Strasser, 1962, as well as the particularly closely
allied Leptatyphbiulus, Alpityphlus, Buchnevia and Mesoporoindus are distinguished almost solely by some relarively minor details of gonopod structure: length of pro- or mesomerite in relation to opisthomerite, degree of development of a velum and a few other outgrowths on the opisthomerite, degree of curvature of the opisthomerite, erc. Unique non-gonopodal or gonopod characters are very few (e.g., the leg-like male P. 1 in Haploprotopts, or the particularly slender mesoand opisthomerite in Buchneria), and each such case has resulted in mono- to oligotypy. The borders between all these tava are almost always far from clear-cut, being likely to disappear with the description of next new typhloiuline species based on males. That many species await discovery/description is beyond doubt.
This statement appears well justified by the above new Albanian Typhloiulus. This form comes closest to a whole number of species, many of which have hitherto been allocated in different (sub)genera. Indeed, due ro its relatively slender pro- and mesomerite, T. beroni approaches certain Stygiiulus (e.g. Typboitulus ausugi Mantredi, 1953 and T. maximus Verhoeff. 1930), Atternsotyphlus (e.g. T. edentulus Attems, 1959). Haploprotopus (c.s. T. ganglbaweri (Verhoeff, 1898)), Spelacablaniulus (e.e. T. serbani unilineatus Ccuca, 1961), Inuersotyphows (e.g. T. longipes Strasser, 1974), Alpityphlms (e.g. T. seawaldi Strasser, 1967) as well as Butheria cormta Verhoeff, 1941, B. sicula Surasser, 1959, cte. However, it differs readily by a peculiar combination of the non-modified mouthparts, unciform epiproct, large and setose inner lobe of the straight promerite, small but cvident velum supporting a Front flagelliform oungrowth, distally barbed, caudally unarmed opisthomerite, etc.
In other words, the entire (sub)generie classification of typhloiuline Leproiulini seems completely out of date (of. Strasser 1962), requiring a thorough revision. However, such a challenge is best left for the furure, when (presumably numerous) new and still poorly known species become adequately documented. Some species assemblages may well prove natutal, monophyletic (e.g. Trogloiulus, see Enghoff 1985), but most others seem highly hetcrogeneous at present (cf. Hoffman 1980).

Cylindroiulus boleti (C. L. Koch, 1847)
Material examinld. - Shkodër District. Bogë, 1000-1100 m. 5-9.Vl.199.3, 13 (NHMS), 1 d, 1 ㅇ (MNHN. Collection Myriapodes EB 036), Ieg. P. Beron \& B. Perrov.

Librazhd District. Between Hotolishr and Librazhd, 100 m , serub, gravel, under stones and bark, 7.V.1995, 1 (NHMS), leg. S. Golovatch, P. Stoev \& B. Petrov.

Remarks

This species has hitherto been known mainly from the Alps, Balkans, and Carpathians, with the adjacent foothills and plains of Taly, Ausuria, Hungary, Rumania, Bulgaria and Moldavia. It has already been recorded in Albania (Attems 1927, 1929), which probably represents the southern range limit.

Brachyiulus apfelbeckii Verhoeff, 1898
Matpriat. examined. - Tirana District. Tirana, Botanical Giardens, under stoney, 8.V.1995, I 6 (NHMS). Ieg. S. Golovarch, P. Stoey \& B. Peroor.
Vlorë Districa. Vlorë, Olea europata forest, under stuncs, I.V.1994, I © (MNHN, Collection Myriapodes EB 300), leg. P. Sroev 政 D. Zaprianova.

Remares

This Balkan species has hitherto been reported only from Bosnia and Hercegovina, Montenegro, N Greece and Bulgaria, so this new record in Albania is hardly surprising.

Brachyiulus varibolinus Attems, 1904

Brachyiulus beratinus Manfredi, 1945, syn. n.
Material examined. - Shkodër District. Bogë, $1008 \mathrm{~m}, 3-4 . \mathrm{VI} .1993,1$ ถ゙, 1 ㅇ (NHMS), 1 of (MNHN, Collection Myriapodes EB 326), I $\$$ (7,MUM), leg. P. Beron \& B. Perrov.

Remarks

With the material at hand, a direct comparison between the very crude drawings of gonopod strucrure presented loy Manfredi (1945) for her B. beratinus (described from Bcrati, S Albania) and the good illustration of a toporype of B. waribolinus given by Strasser (1976), leaves no doubt that we face the same creature, hence the
new synonymy．Athough varibolinus has been reported only from Epirus， N Greece and Albania，the record from Bogë，in the extreme north of Albania，might be evidence of a wider distribution in rhe Balkan region．It seems opportune to recall that most Brachyiulus species are currently quite widespread to ubiquitons， partly through human agency．

Brachyiulus sp．indet．

Material examined．－Librazhd District．Above Prenjas， 750 m ，scrub on slope．under stones and bark，7．V．1995， 2 甲 $9($ NHMS），leg，S．Golovatch， P．Stocy \＆R．Petrov．－Reoween Horolishy and Librazhd， 300 m ，scrub，gravel，under stones and bark，7．V．1995， 1 （NITMS），leg．．S．Golovatch， P．Stoev \＆B．Petrov．

Remarks

Regrettably，in the absence of male，these speci－ mens could not be identified to species， although，judging from their relatively large size， they all probably belong to apfelbeckii．

Megaphyllum bosniense（Verhoeff，1897）

Material Examined．－Shkodër District．Bogë， 1000－1100 m．5－9．VI．1993，18．12 ㅇํ， 1 juv．ठै， 2 juv．（NHMS），leg．P．Beron \＆B．Petrov．－Bogë， Maya Tchardakut， 1200 －1400 m，I．VI．1993， 2 万 δ ， $1 \$$（NHMS），Ieg．P．Beron．－Above Boges， 1800－1900 m，piffall trapping，20－23．V．1993．2 ठ ठ （NHMS），leg．P．Beron \＆B．Petrov．－Thech， $800-900 \mathrm{~m}, 28 . \mathrm{V} .1993 .1$（ FHMS ） 1 6． 1 9 （ZMUM），leg．P．Beron．
Librazhd District．Between Hotolishr and Librazhd， 300 m ，scrub，grivel，under stones \＆bark， 7.05 .1995 ， 299,29 رuv．（NHMS），leg．S．Golovatch，P．Stoev \＆B．Petrov．－Above Prenjas， 750 m ，scrub on slope，7．V．1995， 1 \％（NHMS），leg．S．Golovatch， P．Stoev \＆B．Petrov．－Cala－San al border of Macedonia， 1150 m ，under stones， $13 . \mathrm{V} .1993,1$ it （NHMS），leg．P．Stoev．
Tirana District．Mt．Dajti， 6.20 km NE of Tirana， 1000 m ，Pogus，Neer，cte．forese，leaf litter，under stones and bark，9．V．1995， 1 of 1 if（MNHN， Collection Myriapodes EB 037），leg．5．Golovatch， P．Stoey \＆B．Petrov．

Remarks

This Balkan（s．l．）species seems rarher common in Albania，whence it has long been recorded （Attems 1927，1929）．

Megaphyllum bercules（Verhoeff，1901）

Material examinfid．－Vlorë District． $4 \mathrm{~km} S$ of Vlorë，under stones，I．V．1994． 1 juv． on（ $^{\text {（NHMS），leg，}}$ P．Stoev．－Pass Llogorasë， $1(125 \mathrm{~m}$ ，badly deteriorated Piturssand，under stones，12．V．1995． 1 §． 1 中， 13 juv． （NHMS），keg．S．Golovatch，P．Stoet \＆B．Petiov．
Librazhd District，Above Prenias， 750 m ，serub on slope，7．V．1995，1 9 （MNHN，Collection Myriapodes EB（22）， 4 juv，dob， 2 juv． 98,1 juv． （NHMS），leg．S．Golowatch，P．Stoev \＆B．l＇etrov．－ Berween Hotolisht and Librazhd， 300 m ，scrub，gra－ vel，under stones and bark，7．V．1995， 1 O（NHMS）， leg．S．Colovatch，J＇．Stnev \＆B．Petrov．
Leskovik District． 1 ？（NHMS）， 13 km N of Ersetë，near road，leaf litecr，12．V．1995，leg． S．Golovarch，P．Stocv \＆B．Petrov．
Korcë District．Komnik（ $=$ Kamenice），under stones， 7．V．1994， 1 ？， 1 juw．（NHMS），leg．P．Stoev．

Remarks

This Balkan（s．l．）species also seems to be rather common in Albania，whence it has long been recorded（Attems 1929；Manfredi 1945）．

Megaphyllum imbecillum（Latzel，1884）

Materlal examined．－Leskovik District，$c .13 \mathrm{~km}$ N of Ersekë，near road，leaf litter，12．V．1995， 1 ot，
 EB 131），leg．S．Golovatch，P＇．Stoev \＆B．Petrov．

Remarks

Several varicties of this species are known （Strasser 1976），all confined to Epirus，N Greece． New to Albania．

Megaphyllum karschi（Verhoeff，1901）

Material examined．－Vlorë District．Albania， near Dukati， 450 m ，Ieaf litter， $11 . V .1995,10^{*}$ （NHMS）， 1 oे（MNHN，Collection Myriapodes EB 341），leg．S．Golovatch，P．Stoev \＆B．Petrov．

Remarks

As far as we are aware，this obviously rare Albanian endemic species has never been recove－ red since its original description（Verhoeff 1901）． The new sample at hand can be regarded as toporypic，as it too originates from the visinity of Vlorë（ $=$ Aulona，＝Valona）．

Megaplyllum sp．

Material examined．－Shkodër District．Bogë， Maya Tchardakut， $1600-1800 \mathrm{~m}, 1 . V I .1993,1$ o， 1 juv．（NHMS），leg．P．Beron．－Same locality， 1800－1900，pitfall trapping．20－23，V，1993， 1 ¢． 2 juv． 9 ㅇ（NHMS），leg．P．Beron \＆e P．Swev．
Tirana District．Tirana，Botanical Gardens，under stones， $8 . V .1995,2$ juv．（NHMS），leg．S．Colovatch， P．Sroev \＆B．Perrov．
Gjirokaster District．Gjirokaster，castle，under stones，6．V．1994， 2 욱， 2 juv．아（NHMS），leg． P．Sroev．

Rfmarks

In the absence of adult male，these samples could not be identified to species．

> Acanthoiulus fuscipes（C．L．Koch，1847） （Fig．9）

Julus idriensis C．L．Koch，1847，
Julus dalmaticus C．L．Koch，1847，
Iulus fuscipes var．leuronotus Lavzel，1884，
Intus fuscipes var．subcressas Latzed，1884，
Pachyinhus basnicusis Verhoeff．1895，syn．n．
Pochyiulus fiscipes var．kromiii Verhoelf； 1898 ，
Pachyinhus farsitises altiotagus Verhoeff， 1899 ，syn．n．
Patfoyithus Jiscipes plusersis Verhueff，1910，syn．n．
Pachuinhus fuscipes simplex Verlueff，1910，syn．n．
Materlal examinfd．－Shkodër District．Theth． $800-900 \mathrm{~m}, 28 . \mathrm{V} .1993 .1$ du（ α ）， 1 of（NHMS），leg． P．Beron（No．561）．－Nbove Bogë，Maya Tchardaku，1600－1800 m，2．VI．1993． 1 ơ（ β ） （NHMS），leg．P．Beron．－Same locality，1．VI．1993， $2 \delta^{\circ} \delta^{(\beta)}$ ， 1 ㅇ（NHMS），leg．l＇．Beron．－Bogë， 1000－1100 mo．3－9．VI，1993， 1 o（ m$), 69$（NHMS）， I ${ }^{\circ}($（c）（MNHN．Collection Myriapodes ER 103）． I of（ x（ZMUM），leg Γ ．Betun \＆R，Petrov （No．569）．－Above Bogè， $1800-1900 \mathrm{~m}$ ． 20－23．V．1993， 1 juv．（NHMS），leg．P．Beron \＆ B．Petrov．＝Same locality， 1300 m ，Maya Bridashit． 20．V．1993，I juv．© ， 1 呆（NHMS），Leg．P．Beron \＆ B．Petrov（No．593）．－Same dats，5－9．V1．1993， 1 ó（a）（NHMS），leg．P．Beron \＆B．Petrov
 leg．P．Beron（NBe these males display somewhat dif－ ferent gonopods，and especially striking differences lic in coloration，one with pale legs and somites，the other with bichromous somites－pale dorsally，dark ventrally－and dark legss）－Same locality，upper
 （NHMS）， 1 （ β（ MNHN ，Collection Myriapodes EB 103）， 1 \＆（ β ）（ZMUM），leg．P．Beron \＆B．Petrov （No．558）．－Same data，pirfall trapping， 20－23．VI．1993， 3 के के（NHMS），leg．P．Beron \＆

B．Petrov（NB：mesomerite not ponted，promerite wilh a rounded distal margin carrying a simple toonh）． －Apre M1．Rhadohimës，2200－2400 m，29．V．1993， 2 ô a（20，1队）， 1 （ FHMS ），leg．P．Beron

Librazhd District．Near Librazhd，I．X．1994，I ©（ x ）， 1 旱， 3 juv．（NHMS），P＇．Stoev．－Above l＇renjas， 750 m ，scrub on slope，7．V．1995， 1 （ q （NIIMS）．Leg－ S．Golovatel．P．Stoev \＆B．Petrov．－Berween Howlisht and librazh， 300 m ，scrub，gravel．under stones and hark，7．V．1995，1 d，1 9， 2 juv．\＆d， 6 juv．（NHMS），leg．．S．Golovaich，P．Stoev \＆ B．Perrov．
Tirana District．Peicla， 15 km SE of Tirama， 350 m ， under stones，ruins，serub，9．V．1995， 5 ó ©（y）， 7 옹， 2 juv． 9,10 juv．（NHMS）， $15(\gamma)$（MNHN， Collection Myriapudes L®B 103）， 1 ठ（ γ ）（ZMUM）， leg．S．Coluvath，P．Stoev \＆B．Petrov，－Same locality， 300 m ，arrificial galleties near road， 9．V．1995， 1 ¢（NHMS），leg．P．Stocv \＆B．Petrov．
Lushnja Districr．Divjaka Naural Park．Pinus hate－ pensis and Pr pinm strand forest， $10, \mathrm{~V}, 1995,8$ 옹， 2 juv．of（NHMS），leg．S．Golovatch，P．Stoev \＆ B．Perrov．
Rrëshen Discrict．Kurbnesh，cave with ladder， 11．V1．1993， 1 （NHMS），leg．P．Beron \＆B．Perrov （No．570）．－Merkurth，under stones，11．VI．1993， 1 \＆（NHMS），leg．P．Beron \＆B．Petrov．

Remarks

This is obviously the most common and abun－ dant member of the tribe Pachyiulini in the material at hand．Almost all samples are from the north of Albania，and all are more or less grey in colour，sometimes with the middle of the dor－ sum paler，sometimes with the metazona more strongly brown．In contrast，the legs vary consi－ derably in colour，from pale yellowish to dark brown via red－brown．＇the epiproct is always pre－ sent，but its length varies，being mostly a little longer in males than in females．
Two samples from two different，but adjacent， lucalities deserve special mention．Both contain particularly pale male in which the gonopod structure also appears to be somewhat different from the remaining samples．What seems espe－ cially important in this context is that the diffe－ rences concem the shape of the promerite（P．8）， notably of the distomesal outgrowth（Fig．9C，D， $\mathrm{H}, \mathrm{I}, \mathrm{K}-\mathrm{B}, \mathrm{d}$ ），which has hitherto been considered as one of the basic characters for the discrimina－ tion of pachyibline genera and species． Superficially，using the traditional approaches of

Verhoeff (1901, 1910, 1923), Attems (1902, 1940), Manfredi (1945) or Strasser (1976), such a prominent (d) as in figure 9I or 9P, coupled
with certain other distinct features (less strongly rounded lobes on the male cheeks, shorter epiproct, a differently-shaped apex of the meso-

7), ठ̈ drom Rhadohimës (var. α, dark, A-E; var. B, pale, F-J), Bogë (var, α, K, N; Fig. 9. - Acanthoiulus fuscipes (C. L. Koch, 1847), σ (var γ both body and legs dark, 44 and 49 body segm., O): A, F, right mandivar. B, L, P), Maya Tchardakut (var. B, M), and Petrela (va, H, promerite (= peltogonopod), caudal view; D, I, K-P, promerite, lateral view; J, K, gonopod ($=0$ opisthomerite), lateral view. Scale bar: 0.1 mm .
merite, see figure $9 \mathrm{~F}, \mathrm{G}$), would immediately warrant a new taxon, at lcast a new subspecies.
In fact, no less than a dozen subspecies, varieties or synonyms of fuscipes are known: (1) attiuagus (Verhoeff, 1899), tirst proposed and ever since treated as a subspecies of fuscipes (sce Verhoeff, 1903, 1910; Attems 1929); (2) arcadicus (Verhoeff, 1900), described as a variety of fuscipes, but later cransferred to Brachyiulus (now in Megaphyltum) (see Verhoeff, 1903, 1910); (3) bosniensis (Verhoeff, 1895), described as an independerte species (see also Verhoeff, 1899), bur later downgraded to the stazus of a subspecies of fuscipes (see Verhoeff, 1903, 1910; Attems 1929, 1959): (4) idriensis (C. L. Koch, 1847), and (5) dalmaticus (C. L. Koch, 1847), both originally described as independent species, but later referred to either as a synonym (f. Larze! 1884) or a variery/subspecies, respectively, of fiscipes (see Latzel 1884; Verhocff 1910; Atterms 1929, 1959: Manfredi 1932, respectively); (6) krohnii (Verhocff, 1898) and (7) leuconotus (Latzel, 1884), both first treated as varietics of fuscipes (sec Latzcl 1884: Verhoeff 1898, 1910; Attems 1929), but later elcvated to subspecies (see Attems 1959): (8) montanus Verhoeff, nomen nudurn (?), mentioned as a junior synonym of idriensis (see Verhoeff 1910); (9) plasensis (Verhoeff, 1910), described and since treated as a subspecies of fuscipes (see Verhoeff 1910; Attenıs 1929, 1959); (10) simplex (Verhoeff, 1910), described and since considered as a subspecies of fuscipes (see Verhoeff 1910; Attems 1929, 1959); (11) steinii (Karsch, 1881), described as an independent species, but later synonymized with fuscipes (see L.atzel 1884); and (12) subcruassus (Lazzel, 1884), first established as a varicty of fuscipes (see Latzel 1884), but later synonymized under fuscipes furscipes (see Verhoeff 1910). Fout of those names have been reported from or closely enough to Albania (see Checklist below), while simplex has heretofore been recorded solely in N Albania, where our questionable males were found.
The variability in (d) shapes of the N Albanian samples ar hand seems to center around two types, α and β, apparently without correlation with any ocher importane character such as coloration, length of the epiproct, shape of the lobe on the male mandibular stipes, etc. (see

Fig. 9A-I). We seem to face here a bimodal partern of infrapopulational variation, which might be evidence of a species in the course of active speciation. Interestingly, whereas both these morphs, α and β. coexist at numerons localities of the Shkodër District, N Albania, further south, at Petrela and Librazhd, a third morph, γ, is observed which is closer to morph α and somewhat bridges the extremes (see Fig. 90).
Similar observations have been made by Verhoeff (1898, 1899, 1910) in Rosnia, Hercegovina and Dalmatia, where intermediates between kruhnii, leusonotus and fiscipes fuscipes (Grundform), but not between idriensis and fuscipes fuscipes, have been found. Moreover, plasensis and altivagus appear sympatric (Plasa near Jablanica, Hercegovina, i.e. very close to the Albanian border), if not syntopic (Verhoeff 1910). Only with a very modest degrec in accuracy, using available descriptions, illusirations and keys (e.g. Verhoeff 1910), each of our three fuscipes morphs from Albania could be attributed to a definite variety or "subspecies", e.g. morph α perlaps to fiuscipes var. fuscipes, morph β probably to fuscipes var. bosniensis, and morph γ apparently to fiscipes var. idriensis. However, such deterninations hardly make any sense in the light of what is presumably only an infrasubspecific, micropopulational starus of these varieties. In addition, the drawings available, if any, in the literature are far too often deficient, further adding to the uncerrainty and confusion concerning the present-day level of pachyiuline systematics. To study variation in the shape of the promerite, for instance, not only the conventional caudal, but also a lateral view appears most instructive (see Fig. ${ }^{9} \mathrm{C}, \mathrm{D}, \mathrm{H}, \mathrm{K}-\mathrm{P}$). Like in Acanthopetalum carinatum (see above), the above evidence seems sufficient not only to formally synonymize all currently established subspecies of Acinthoiulus fuscipes and downgtade them to the rank of varieties/morphs it best (see Latzel, 1884), hut also to question the status of moss if not all other pachyiuline "subspecies" as well as of a good number of species, particularly within the prolific, most closelyrelated, but taxonomically no less badly confused, genus Pachyiulus Berlese, 1883 (see also below).
To sum up, Acanthoiulus fuscipes can be stated to
represent a highly common and polymorphic Balkan (s.l.) species, ranging from NE Italy in the west to Serbia and Macedonia (including the Greek part) in the east and sourh-east.
The reason we use the name Acanthoinlus dcserves special atrention. Until now (e.g. Ceuca 1992), with only a few exceptions (e.g. Attems 1959), most authors refersed all larger pachyiulines to a single genus, Pabyiulus Berlese, 1883, sometimes preseming a subgeneric division. For example, Hoffman (1980) regards no Fewer than six names (two invalid) as synonyms or subgenera of Pacbyiulus, including both Diploiulus Berlcse, 1883, and Acanthoiulus Verhoeff, 1894.
It is importans ro mention in this comection that Jeekel (1970) considers the name Diploiulus by Berlese (1883) as invalidly proposed, without strict typification. The same concerns Pachyiuhus, which was first erccred withour strict rypilication. Only later did Berlese (1886) explicitly designate rype species for both genera, namely Julus ruffifons C. L. Koch, 1847, for Diploiulus, and Sulus uarius Fabricius, 1781, for Pachyiulus. We fully agree with Jeekel (1970) that the later choice of rafifrons as the type species of Diploiulus was invalis, having been based on a species not menrioned in the original description. Had it been otherwise, the status of the large genus Cylindroiulus Verhoeff, 1894, would have again been endangered (see Read 1992). However, we disagree thar both generic-level names concerned were proposed invalidly, for reading Berlese (1883) catefully leaves one convinced that the mention of only Iuhas watius at the end of the original diagnosis of lachyiulus, and of only /uhes terrestris Linnacus, 1758, at the end of the original definition of Diploiults, is sufficient to regard both gencric names as typified by monorypy. In other words, both Paclopiulus and Diploiulus must be considered as properly typified by monorypy, while all subsequent type redesignations and doubts are to be ignored.
Fortunately for Pachyiulus, its type species has never been reconsidered since. No less Itackily for present-day diplopod taxonomy, the original, valid, designation of terpestris for Diploinlus automatically makes the latter taxon a junior objective synonym of Julus Linnaeus, 1758, a
genus based on the same terrestris. Hence, Acanthoiulus Verhoeff, 1894, becomes the first in the list of subjective synonyms or subgenera of Pachyiulus. Applicability of Acanthoinlus $(=$ Oxyiulus Verhoeff, 1896), as opposed to the remaining Pacbyiulus s. str., seems to us fully justified for larger pachyiulines displaying a very evident epiproct and (almost) no pseudoflagellum on the solenomeritc. Thete are only two such forms, fuscipes and cassimensis Verhoeff. 1910, the latter species endemic to S Italy.

Paclyiulus dentiger Verhocff, 1901

(Fig. 10A, B)
Maierlal mamined. - Sarandë District. Burrinti, 16.IV.1994. 10 (NHMS), leg. S. Beshkov.

Remarks

As lar as we are aware, this is a second record of dentiger, the first since its original description from Vlorë (= Valona), Albania (sce Verhoeff 1901). As the opisthomerite has hitherto never been depicted, we present now illustrations of gonopod structure (Fig. 10A, B). The agreement between our sample (length only 25 mm , width 1.8 mm , fifiy-two body segments, coloration dark, tatsal soles absent, promerite characteristically shaped and armed, etc.) and the original description seems quite convincing.
P. dentiger appears to be especially closely related to the sympatric P. valonensis Verhoeff, 1901, being distinguishable solely by the paler body coloration and larger size of both the distomesal tooth on the promeritc and the tooth on the mesomerite.

Pacbyiulus cattarensis (Latzel, 1884)

Materlal fexamined. - Durrës District. 4 km N of Durrés, under stones, 25.V.1993, 1 juv. ô, 1 早 (NHMS), keg. P. Stoev \& D. Zaprianova, - Same localiry, 26.V.1993, 2 ठ和 (ZMUM), leg. P. Stoev.
Sarandë District. Himar's, 100 m , under stones, 3-4.V.1994. 1 ס., 1 오 (NHMS). leg. P. Stoev. lonian coast, Dhërmi, under stones, 2.V.19y4, 1 juv. ठ́. 1 §. (NHMS), leg. P. Sroev, - Ionian cuast, between Dhërmi \& Himaré, small niche, 3.V.1994. 1 ơ (NHMS), leg. P. Sroev. - Between Dhérmi and Himarë, 30.V.1994, 1 ó, I 9 (NHMS'), leg. P. Stoev.

Vlorë District．Vlorë，under stones and soil， 1．V．1994， 1 ot， 4 오（NHMS），leg．I＇．Stoev \＆ D．Zaprianova．－Vlorë．Olea enrupata forest， 1．V．1994， 1 军， 2 juv．ơ के， 2 juv．（NHMS），leg． P．Stoev \＆D．Zaprianova．－Near Dukati， 450 m ， 11．V．1995． 2 あず， 2 오． 1 juv．古（NHMS），leg． S．Golovateh，［＇．Stoev \＆B．Petrov．－ 10 km N of
 leg．S．Golovarch．－L．logorasë Pass，alt． 1025 m ． under stones， $11 . V .1995,3$ 오，keg．S．Golovarch， P．Stocy \＆B．Petrov．
Librazhd District．Above Prenjas， 750 m ，shrub on slope，7．V．1995． 13 9 오（NHMS），leg．S．Goluvatch， P．Stoev \＆B．Petrov．－Between Howlisht and Librazhd， 300 m ，scrub，gravel，under stones and bark，7．V．1995． 1 8． 4 오오（NHMS），leg． S．Golovatch，P．Stoer \＆B．Petrov．
Tirana District．Tirana，Botanical Gardens，under stones，8．V．1995， 7 d ${ }^{6}$ ， 6 早早（NHMS），leg． S．Golovatch，P．Stnev \＆B．Petrov．－Petrela， 15 km SE of Tirana， 350 m ，ruins，scrubs，under stones， 9．V．1995， 3 오 Q，leg．S．Golovarch，P．Stoev \＆ B．Petrov．

Remarks

This common Balkan species has long been known from Albania（Verhoeff 1901；Aitems 1929；Manfredi 1932，1945）．Only the males from Fier differ by the slightly more faintly oblique distal margin of the promerite，which is evidence of certain variability of this congener as well．
Due to its unusually slender promerites（＝pelto－ gonopods）（P．8）and gonopods（P．9），cattarensis is actually perhaps among the most readily recogni－ zable Pachyithts species in the entire Balkan region．Unfortunately，the situation is far less clear as regards the other，very numerous，species， subspecies or varietics encountered in the peri－ Adriatic zone（Iraly，Greece，Albania，ex－ Yugoslavia），e．g．burgariens，varius，flavipes，oeno－ logrus，apfelbecki，ctc．In some of these and other taxa，all three main distal parts of the gonopod－ i．e．the pseudoflagellum（ Pf ）（rogether with the fovea），the fringed lamella（L），and the seminal branch，or solenomerite（S）－in spite of minor vartations，display relatively constant length ratios（cf．Artems 1940），allowing for a rather confident species identification．The main com－ binations are as follows：

Pf $=\mathrm{S}=\mathrm{L}:$ P：asiaeminoris Verhocff，1898；P．lobifer Attems， 1940 （Pf enlarged）；
$|\mathrm{P}|^{\circ}=\mathrm{S} \gg$ I．：P．nenologzus Berlese，1885，as depicted by Berlese（1885），which may well be a mistake（see also just below）！；
PF $\gg S$ or a little $>$ L．there are two distinet groups differing in mesomerital structure：
（a）mesomerite enlarged and rounded apically： P．hwomatiws（Karsch，1881）；P，Anengricus gratilis Vethodi，1928；P．asiatmimoris sensu Autems，1940；
（b）mesomerite acuminate：P ．denologus Berlese（det． A．Berlesc，unpublished ligures raken from a synuype by H．W．Brolemann，reproduced here in ligure 10E， F）：P．flamipes（C．L．Koch，1847），sensu Auems，1902； P，nonolegus sensu Attems，1902，1940；P．aenulugers prominens Attems，1910，I ．asiazminoris sensu Stasser，1974：P．cattarensis pluto Verhoeff．1910， sensu Arrems．1940）；P．krivolusskyi Golovatch． 1977 $1=$ Tulus formtissimus Muralewic\％，190\％，non Iuhus foe－ tidissimus Savi，1819，herewith the subjective junior synonym krivoluskeyi becomes available as a replace－ ment name to avoid homonymy，syn．n．）；P ．varius （Fabricius，1781），sensu L，atzel，1884，and Attems， 1902，1940；P．dentiger．

Numerous taxa，in which gonopods（P．9）have never been figured，scem also to belong to this ＂variushoenologru＂group：brussensis Verhoeff， 1941；brusseusis obscurus Verhocff，1941；cophalo－ nicus Artems，1902；flanipes bosporanum Verhoeff，1941；flavipes insularnm Veahocff， 1940；flavipes rufas Verhocff．1900：bummolus Verhocif，1910；silvestrii Verhoeff．1923；unicolor aprutiamas Verhoeff，1930；unicalor cimintensis Verhoeff，1930：wacolor alivarum Verhoeff， 1951：warius palliper Manfredi， 1945 （see also below）．
$\mathrm{Pf} \gg \mathrm{S} \gg \mathrm{L}: P_{\text {．cattarensis；，may be also } P \text { ．longelobu－}}$ lutus Attems，1902，and P ．cattarensis pseudounicolor Verhoeff，1902；
Pf $>\mathrm{S}>1$ ：Pachyiulus varius sensu Berlese，1885； P．apfelbecki Verhoeff．1901，schsu Attems，1940；
$\mathrm{Pf}=1 .>\mathrm{S}:$ P．specinsas Verhoeff， 1901 （Pf acuminate）； $\mathrm{Pf}>\mathrm{S} \gg 1$ I．：P ．hnicolor milesius Verhoeff，1923； P．flawipes sensulignan， 1903.
Pf $>1 .>5: 1$ ：marmoratus Verhocff， 1901.
Some of these taxa differ from each other only in external characters，mainly size and，especially， coloration．Of course their gonopod structure does display minor variations too，but it seems highly homogencous．Only（l＇f）surpasses both distal branches and the mesomerite of P．9，while
in P. 8 there is a distomesal tooth of slighty varying shapes. So we consider some further names as actually based on a single, evidently variable species, hence the new synonymy just below.

Pachyiulus varius (Fabricius, 1781)
(Fig. 10C-K)
Julus flavipes C. L. Koch, 1847, syn. n.
Julus nigripes C. L. Koch, 1847
Julus unicolor C. L. Koch, 1847
Tulus oenologus Berlese, 1885, syn. n.

Patchyinlus apfelbecki Verhoeff. 1901, syn. n.
Pachyinur uarius var, pallipes Manfredi, 1945, syn. n.
Material fxamined. - Shkodër District. Bogë, Maya Bridashir, $1300 \mathrm{~m}, 20 . \mathrm{V} .1993,1$ o, 1 juv. $\begin{gathered}\end{gathered}$ (NHMS), leg. P. Beron.
Tirana Distrist. Mt. Dajti, c. 20 km NE of Tirana, 1000 m , Fagus, Acer, etc. forest, leaf litter and under bark, 9.V.1995, 1 है, 2 of (NHMS), leg. S. Golovanh, P. Stoey \& B. Petrov,

Sarandë Districı. Dhërmi, 16.IV.1994. 1 ㅇ. 4 juv. δ ठ, 5 juv. q (FH MS), leg, S. Beshkov.
Vlorë District. Vlorë, Olea europaea forest, under stones, 1.V.1994, 1 ô (NHMS), leg. P. Stoev \& D. Zaprianova.

Fig. 10. - Pachyiulus dentiger Verhoeff, 1901, do ot from Butrinti (A, B), and Pachyiulus varius (Fabricius, 1781), \& syntype of fulus oenologus Berlese, 1885, from Firenze (Etruria) (C-F), and के from Vlorë (G-J) and Dhërmi (K) : A, C, G, promerite, caudal view; B, entire gonopod complex, lateral view; D, H, promerite, lateral view; E, F, I, opisthomerite, lateral, mesal and lateral views, respectively (E and F, de I. H. W. Brolemann); J, K, epiproct, dorsal view. Scale bar: 0.5 mm .

Remarks
Although this species is represented in our Albanian samples by only a few adult males，they allow additional light to be shed on is highly confused taxonomy．Already Latrel（1884）reco－ gnized the first two junior synonyms of varius （terra typica：Italy），namiely nigripes and unicolor． However，since then，no serious attempt has been performed to reassess the indeed highly varialle varius．Instead，numerous new Pactyiulus species， subspecies and varieries have been established throughour the Mediterranean，many of them displaying no significant differences，whether it would be between each other or from varius，or both．Moreover，one such species，flauipes（locis typicus：Pola， N Croatia），has been Ieft untou－ ched since Latzel（1884），although he in fact noted its geat overall similarity to varius，with the differences lying solely in colotation（paler yellowish－brown νs brownish－black，respectively）． P．oenologus was originally described by Berlese （1885）from Erruria，and only a year later did he （1886）report it，as a＂new＂species，from most of Italy．Hence the first introduction of the name demologus dates fom 1885，nor 1886，as currently accepted by mistake．P．parius，flavipes，penologus and some of their＂subspecies＂or varicties（some even under unicolor）have since been reported from south of France in the west to the Crimea and W Anatolia in the east，but in the Balkan region（s．L．）none shows a coherent pattern，being dispersed in a random，mosaic－like way．
P．apfellecki was described from N Greece （Verhoeff 1901），and varius var．pallipes from Albania（Manfredi 1945）；neither seems to have been recorded since．
Fortunately，the MNHN collections contain published and unpublished material of varius， flavipes and nenologus．allowing direct compari－ sons to be made．Moreover，one of the oenologus samples appears to contain several syntypes （three males and one female），of which one male had previously been revised and even drawn by H．W．Brolemann．We take this opportunity to publish these illustrations for the first time and complement them with our own figures of pro－ merital structure（Fig．10C－F）．These syntypes are in good condition，though perthaps a litrle faded due to long preservation in alcohol，being
gray with brown annulations（metazona）；legs palc brownish，collum and celson brown；later without teal epiptect，terminally slightly obsuse， angle $c .120^{\circ}$ ；body lengh $c ; 45$（male）to 50 min （fenale），diameter 3 （male）to 3.5 mm （female）； males with $59(-3), 61(-3)$ and $63(-3)$ ，fermale wish 63（－3）body segments．
As a result，déspite pronounced variation in habi－ tus and gonopod structure，a direct comparison of the new Albanian samples（Fig．10G－K），older material of flavipes．（from Sicily），varius（from Bergamo and Romagna－Meldola，Italy，as well as from Zara，Dalmatia）and oenologus，with des－ criptions and drawings［including several unpu－ blished sketches of parius and flaviper gonopods， all executed by H．W．Btolemann（iconographic file，MNHN）］，along with the available descrip－ tions of apfelbecki and varius var．pallipes，reveals that they all belong to a single，highly yariable and widespread（trans－Mediterranean）species，thvius by priority．There could hardly have been a better name chosen for such a species！
Variation mostly concerns size（our Albanian adults are a little smaller than the above oenologus symrypes），coloration（the Albanian samples are hackish throughout），shape of the epiproct （slightly different even within the Albanian samples，of．Fig．10］，K），outlines of the promeri－ te（the Albanian material is similar to flavipes bospomamus Verhocff，1941，except that the distal margin is as sinuose as that of cuttuvensis），shape of the distal teeth and lobes on the promerite （the Albanian saniples display a large distomedial lobe，rather than a tooth）as well as the form of the caudal tooth on the opisthomerite（from pro－ nounced to almost missing，as noted even for apfelbecki by Verhoeff（1901）），etc．What remains quite stable，is the opisthomerite posses－ sing subequally long and very slender（Pf）and （S），both as long as the mesomerite and clearly surpassing（L），i．e．as depicted by Berlese（1885）．

Pachyiulus bungaricus（Karsch，1881）
Maferial examined，－Librazhd District，Above Prenjas， 750 m ，scrub on slope， $7 . \mathrm{V}, 1995,1$ 百， 1 早 （NHMS），Ieg．S，Golovatch，P．Steev \＆B．Perrov．
Vlorë District． 4 km S of Vlorë，under stones， 2．V．1994， 1 早， 1 juv． 6 （NHMS），leg．P．Stoer．
Sarandë District．Ionian coast，Dhërmi，under
stones, 2.V.1994, 3 우 우 (NHMS), leg. P. Stocv. Ionian coast, Himarë, under srones, 3.IV.1994, 3 오 (NHMS), leg. P. Stnev.

Remark

This very large and easily recognizable BalkanCarpathian species has long been known from Albania (Attems 1929).

Pachyiulus sp.

Materlal examined. - Shkodër District. Bogë, 1000-1100 m, 5-5.VI.1993, 3 우 (NHMS), leg. P. Beron \& B. Petrov. - Above Roge, Alper Mt. Rhadohimés, 2200-2400 m, 29.V.1993, 3 오 여 (NHMS), leg. P. Beron.
Rrëshen Diserict. Kurbnesh, cave with ladder, 11.VI.1993, 19 (NHMS), leg. I'. Beron \& B. Petrov (No. 570).
Durrës District. 2 km N of Durrës, under stones, 24.V.1993, 1 juv. (NHMS), leg. P. Stoev \& D. Zaprianova. - 4 km N of Dutrës, under stones, 16.V.1943, 1 juv. of (NHMS), kg. P. Stoev.

Librazhd District. Between Hotolisht and Librazhd, 300 m , serub, gravel, under stones and bark, 7.V. 1995.1 juv. 0 , 3 juv. ${ }^{\text {P (NHMS), leg. }}$ S. Golovatch, P. Stoev \& B. Petrov. - Above Prenjas, 750 m , serub on slope, 7.V.1995, 2 juv. ${ }^{\circ}$. 1 juv. (NHMS), leg. S. Golovatch, P. Stoev \& B. Petrov.

Vlorë District. Levan, 14.IV.1994; 1 母 (NHMS), leg. S. Beshkov.

Remarks

In the absence of adult male, it has been impossible to identify these samples to species, although most adult female seem to belong to varius.

Chromatoiulus podabrus bosniensis

(Latzel, 1888)
Materlal Examined. - Sbkodër District. Bogë, $1000-1100 \mathrm{~m}, 3-9 . \mathrm{V}, 1993,1$ वै, 2 juv. (NHMS), 1 ठ, 1 ㅇ (MNHN, Collection Myriapodes EB 038); leg. P. Beron \& B. P'etrov. - Same locality, 1800-1900 m, pitfall trapping, 20-23.V.1993, 1 juv. ©́, 1 juv. (NHMS), leg. P'. Beron \& B. Petrov.

Remarks

This W Balkan species or subspecies ranges from N Italy in the north(west) down to N Greece in the south. It has already been recorded from Albania (Attems 1929).

Chromatoiulus sp.

Material examined. - Lushoja District. Divjaka Natural Park, Pinus halepernsis and P. pined strand forest, litter and under stones, 10.V.1995, 1 오 (NHMS), leg. S. Golovatch, ' ${ }^{\prime}$. Stocv \& B. Petrov.
Rrëshen District. Kurbnesh, cave with ladder, 11.VI.1993, 1 (F (NHMS), leg. P. Beron \& B. Petrov.

Remarks

In the absence of adult male, this-material could not be identified closer to (sub)species, although they seem to belong to bosniensis.

Order POLYZONIDA Gervais, 1844
 Family Poiyzonidae Gervais, 1844

Polyzonium germanicum Brandt, 1831

Material. examinfid. - Shkodër

District. Bogë, pitfall trapping, IV.1993, 2 すठ (NHMS), leg. B. Petrov \& P. Beron. - Same locality, Maya l'chardakut, $1400-1600 \mathrm{~m}, 2 . \mathrm{VI} .1993,1$ i (NHMS), leg. P. Beron (No. 595),

Remarks

This pan-European species has already been reported from Albania (Attems 1929).

Acknowledgements

Our cordial thanks are due to all collectors who entrusted us their materials for treatment, in particular to Dr. Petar Beron, currently Director of the NHMS. Two of us (SG and PS) are most. grateful to Dr. Beron again for arranging theit participation in the 1995 collecting trip to Albania, during which Dr. C. Misja and Mr. M. Qirio (both fiom Tirana) rendered us their warm hospitality. One of us (SG) is greatly obliged to Prof. Yves Coineau (MNHN Paris) for avarding him a month-long scholarship ar the Laboratoire de Zoologic (Arthropodes) of the Paris Muséuin. Dr. M. Nguyen Duy-lacquemin (MNHN Paris) very helpfully identified for us both Albanian samples of Polyxenida, and Prof: W. A. Shear (Hampden-Sydney, Virginia, USA) kindly shared with us certain information on the status of an Albanian chordcumatidan in his hands. Last but not least, Dr. M. Judson (MNHN Paris) very generously correcred the

English of the final draft, and Dr. Henrik Enghoff (Copenhagen, Denmark) provided a review of the manuscript.

REFERENCES

Attems C. 1902. - Myriopoden von Kreta, nebst Beträgen zur allgemeinen Kenntnis einiger Gattungen. Sizzungberichte der kaiserticlo Akademie der Wissenschafien in Wien, math.-naturw. Kl. (1), Wien 111; 527-614.

- 1927. - Uter palacaklische Diplopoten. Archiv fiir Naturgeschiche 92A: 1-256
- 1929. - Die Myriopodenfauna von Albanien und Jugoslavien. Zoologische Juturbicher. Syssematik 56: 269-356.
- 1935. - Myriopoden von Epirus: Znologischer Anzeiger 110) (5/6): 141-153.
- 1940. - Beiträge aur Kennems der luliden. Annalen des Nuturlistorischen Musewns in Wien 50: 294-327.
- 1949. - Dic Myriopodenfauna der Ostalpen. Sitzungbericbte der kaverliche Akademie der Wissenschaftem in Wien, Kil. (1) 158: 79-153.
- 1959. - Die Myriopoden der Höhlen der Balkanhalthinsel. Nach dem Material der "Biospeologica balcanica". Annuten des Naturtristorischen Museums in Wien 63:281-406.
Berlese A, 1883. - Achi, Myriopodu at Scarpiones bucusque in Iediad reperta, Fasc. 8. No. 1.
- 1885. - Aidni, Myriopude et Scorpiones bucusque in Italiar reperta, Fase. 23, No. 3.
- 1886. - Julidi del Museo di Firenac. Comributo alla fauna míriapodologica italiana. Bulletino dellí Società Entamologica Italiana 18: 1-112.
Ceuca T. 1973. - Contribution a la conmaissance des Diplopodes (Myriapoda, Diplopoda) de Bulgarie. Bulletin de linstitul de Zuologic et Mruste, Sofia 38 : 241-247.
- 1992. - Quaclques aspects sur la faunistique, l'écologie et la zongéngraphie des Diplopodes de la région Balkanique. Beriche der Noturwis-senschaftlish-Medizinischen Vereins in Innsbruck. suppl. 10: 411-429.
Enghoff H. 1985. - A new species of Irogloinlus with modified mouthparts, with a revised key to the species and new records of the genus (Diplopoda, Julida: Julidae). Lavori dellà Società Venezidut di Scitnze Naturale 10: 69-77.
Hoffman R. L. 1972. - Srudies on Anarollan callipodoid Diplopoda. Mitreilangen nus den bamburgischen zoolugischen Mrweym und Jnstint 69: 81-108.
Hoffman R. L. 1980 . - Classifiration of the Diplopoda. Muséum d'lfistoire naturelle, Genève 1979: 1-237.
Jeekel C. A. W. 1970. - Nomenclator generum et familiarum diplopodorum: A list of the genus and

Family-group names in the Class Diplopoda from the tenth adition of Linnaeus, 1758, ro the end of 1957. Monognafiein uan de Nederlandse Entomolegisifie Verenging, Amsterdam 5: xii $+1-412$.
Latzel R. 1884. - Dic Myrupoden der ÖstareichischUngaziscbou Monarcbie, Wien, H. 2: xii + 1-414.
Manfredi P. 1932. - Miriapodi paccolti in Albania dalla Spedivione Scientifica dell'Instituro Zoologico di Padova, nel 1930. Atti della Accademia del Veneto-Tremina-Istriana, Selci Umbro 22: 111-114.

- 1945. - Miriapodi delláAlbania racculti de L. Boldori, Ath della Societi italiana di Sienze Nouspale 84: 21-32.
Mrsic N. 1987. - Schizmubetera sketi n.g., n.sp. (Diplopoda, Neoatractosomatidae). Bioloski westnik 35 (1): $77-82$.
- 1988, - Polydesmida (Diplopoda) of Yugoslavia. Rasproue II. Retrreda Saze: 70-112.
- 1993. - The fauna of Diploperds (Diplopoda) of Macedonia. Razprave IV. Ruzreda Sazu 34 (2): 19-44.
Read H.J. 1992. - The generic composition of the Cylindraiulini. Berichtr der NaturwissensethafilichMediziniscben Vercins in Innsbruck, suppl. 10: 11-14.
Stratser K. 1962. - Die Typhloiulini (Diplopoda Symphyognatha). Aati dul Mrusen civico di Storia Naturale di Trieste 23 (1): 1-77.
- 1966. - Uber Diplopoden Bulgariens. Anrules

- 1970. - Ober grichische Diplopoden (Griechenland, Korfu, Kreta, Ost-Äaiis). Senckenbergiana Biologian 51 (3-4): 235-253.
- 1971. - Diplopuda. Catalogns frunue Jugaslaviae, 1-jubljana III/4: (-50.
-1973. - Zwei nue gricchische AcanthopetalumArten (Diplopoda Calliposida), liragmenta Entomologicis 8 (5): 237-245.

1974. - Uber Diplopoda-Chilognatha Gricchenlands. Reaue Suisse de Zonlogie 81 (1): 219-300.

- 1976. - Oiber Diplopoda-Chilognarha Gricchenlands, II. Revie Suisse de Zoologite 83 (3) : 579-645.
Verhneff K. W. 1897. - Ucher Diplopoden ans Bosnien. Herzegowina und Dalmation. I. Theil: Polydesmidae, II. und III. Theil: Chordeumidae und Lysioperalidae. Archiv fir Naturgeschiche 63A: 1.39-146. 147-156. 181-204.
- 1898. - Ueber Diplopoden ans Bosnien, Herzegowina und Dalmation. IV. Theil: Julidae. Archiv fiir Naturesthichere 64A: $119-160$.
- 1899. - Diplopodenfana yon Bosmien, in Hercegovina und Dalmatien. Wissenschaffliche Mittailtugri dus Bosnien und der Herzegouina 6: 1-22.
- 1900. - Beitrage zur Kenntnis palärktischer Myriopoden. X. Aufsatz. Zur Vergleichende Morphologie, Phylogenie, Gruppen- und

Arrsystematik der Lysioperaliden. Zoologische Jahrbiucher, Spstematio 13 (1): 36-70.

- 1901. - Beirrage zur Kenntniss paläarktischer Myriopoden. XX. Aufsazz: Diplopoden des östlichen Mirrelmecrgebictes. Archiv für Naturgesthichte, Ig. 1901, 1 (3):241-270.
- 1903. - Uëber Diplopoden. 2. Aufsatz: Griechische Tausendfiissler. Archiv fuir Naturgeschithte, Jg. 1903, 1 (1): 135-153.
- 1909. - Ubber einige [sopoden und Myriapoden aus Monrencgro und Albanien. Gesammele durch Herrn O. Wohlbered. Wissenselmitliche Mitteilungen aus Bosmien und der Herzegowina 11: 1-8.
- 1910. - Uber Diplopoden. 11.-15. Aufsatz (31.-35.): Beirräge zur Kenntnis der Glomeriden,

Juliden, Ascospermorpha und Lysioperaliden, sowie zur Hanna Siziliens, Untersuchungen über Arr- und Gruppensystematik, Morphologie, nachembryonale Entwicklung, Biologic und Geographic. Noma Acta, Halle 92 (2): 138-448.

- 1923. - Zur Kenntnis der PalästinaChilognathen und über einige andere mediterrane Formen. 93. Diplopoden-Aufsatz. Archiv fïr Naturgescheche 89A: 112-157.
- 1932. - Diplopoden-Beirräge. (124. DiplopodenAufsath). Zoolagische Jubrbiucher, Systematik 62 (5/6): 469.524.
- 1952. - Weitere Beiträge zur Kennmis der Isopoden und Diplopodenfauna von Ischia und Capri. Bonner zoologische Beitrage 3: 125-150.

Submitted for publication on 28 August 1996; accepted on 3 October 1996.

CHECKLIST OF DIPLOPODA OF ALBANIA AND ADJACENT LANDS

A Taxa cited from Albania by Ceuca (1992) and our new species/records;
Mo from Montenegro (Cerna Gora) by Artems (1959) and/or Strasser (1971);

Ma from Macedonia (ex-yugoslav) by Strasser (1971);
nG from Epirus (including Corfu) and/or Greek Macedonia (also tunpublished data);
(*) junior synonyms; (?) doubrful raxa.

Taxa

Cited by

POLYXENIDA

Polyxenidae
Polyxenus lagurus Linnaeus, 1758
Polyxenus macedonicus Verhoeff, 1952
GLOMERIDA
Glomeridellidae
Albanoglomus ljubetensis Altems, 1929
Typhloglomeris coeca Verhoeff, 1898
Glomeridae
Glomerini
Glomeris batcanica Verhoeff, 1906
Glomeris conspersa porphyrea C. L. Koch, 1847
Glomeris hexasticha Brandt, 1833
var. amblgua (Haase, 1886)
var. vallicola Verhoeff. 1906
Glomeris pulchra pulchira C. L. Koch, 1847
var. conjuncta Attems, 1927
var. wohlberedti Verhoeff, 1909
var. verhoeffi Atterns, 1927
var. discreta Attems, 1927
Glomeris pustubta Latreille, 1804
Haploglomerini
Haploglomeris mullistriata (C. L. Koch, 1844)
Onychoglomerini
Onychoglomeris hereogowinensis (Verhoeff, 1898)
? = Onychoglomeris herzogowinensis media Attems, 1935

Attems 1929, 1959 (Ma)
(Ma)
auct., Atterns 1959 (Ma)
Mo)
(nG)
(M0)
Verhoeff 1932; Attems 1929, 1949;
($\mathrm{A}, \mathrm{Ma}, \mathrm{Mo}$)
Atterns 1929
Attems 1929
Altems 1929, 1959 (Mo)
Attems 1929
auct.
auct.
Manfredi 1945
(A)
(Mo)
auct., Attems 1929, 1959
(A) (MO) (nG)
auct., Attems 1959 (A)

Taxa

Cited by

Trachysphaerini
Hyleoglomeris epirotica (Mauriès, 1966)
Trachysphaera acutula (Latzel, 1884)
Trachysphaera corcyrea Verhoeff, 1900)
Trachysphaera costata (Waga, 1858)
? = Trachysphaera rotundata (Lignau. 1911)
Trachysphaera schmidtii (Heller, 1858)
= nodulifera (') (Verhoeff, 1906)
Tribus incertae sedis
Epiromeris aelleni Strasser, 1976

POLYDESMIDA

Paradoxosomatidae
Metonomastus petrelensis n.sp.
Stosatea simonl (Daday, 1889)
(?) Stosatea cretica (Verhoeff, 1901)
Stosatea granulata Daday. 1889
Stosatea minuma Strasser, 1976
Stosatea sp., aff. ladrense (Pregl, 1883)
Strongylosoma stigmatosum (Eichwald, 1830), non pallipes (Olivier, 1792)

Xvstodesmidae
Melaphe vestita (C. L. Koch, 1847)
Ochridaphe albanica Verhoeff, 1932
Polydesmidae
Brachydesmus cetnagoranus Attems, 1912
Brachydesmus cornutus Attems, 1903
Brachydesmus da/maticus Latzel, 1884
Brachydesmus herzogowinensis Verhoeft, 1897
Braclydesmus lapidivagus Verhoeff, 1897
Brachydesmus lyubetensis Attems, 1912
Brachydesmus lobifer Verhoeff, 1897
Brachydesmus perrsterensis Verhoell. 1932
Brachydesmus stygivagus Verhoeff, 1899
Brachydesmus subterraneus Heller, 1858
Brachydesmus vermosanus Attems, 1929
Brachydesmus zawalanus Attems, 1912
Polydesmus collaris C.L. Koch: 1847
Polydesmus collaris tussilaginis Verhoeff, 1897
Polydesmus complanatus (Linnaeus, 1758)
= Polydesmus complanatus illyricus (") Verhoeff, 1895
Polydesmus herzogowinensis Verhoeff, 1897
Polydesmus mediterraneus Daday, 1889
Polydesmus mediterraneus oertzeni Verhoeff, 1901
Polydesmus mediterraneus martensi Strasser, 1967
Polydesmus varians Strasser, 1976
Polydesmus wardaranus Verhoeff, 1937
CHORDEUMATIDA
Anthroleucosomatidae s.l.
Anamastigona albanensis n.sp.
Paeonisoma faucium Verhoeff, 1932
Choroeumatidae
Melogona broelemanni (Verhoeff, 1897)
(nG)
(nG)
(nG)
Attems 1929, 1959 (Ma) (nG)
(nG)
auct., Attems 1929, 1949, 1959 (A)
($n G$)
(A)
(A) (Mo) (nG)
? (A)
(nG)
(nG)
Strasser 1974 (nG)
auct., Attems 1929, 1949, 1959;
Verhoeff 1932 (A, Ma)

Attems 1929, 1959
auct. (A) (Ma)
(Mo)
(Mo)
(Mo)
(Ma) (A)
(Mo)
auct., Attems 1929 (Ma)
(Mo)
(Ma)
(Mo)
Attems 1929, 1949 (A) (Mo)
auct., Attems 1959 (Mo)
(Mo)
Attems, 1929, 1949 (A) (Ma, Mo)
Attems 1959
Attems 1929, 1949, 1959
(A) (Mo, Ma) (nG)

Attems 1929, 59; Manfredi 1945 (A)
(Ma, Mo) (nG)
Verhoeff 1901; Attems 1929, 1959;
Manfredi 1945 (A) (Mo)
auct. (nG)
(nG)
(nG)
Attems 1959 (Ma)

(A)

auct. (A) (Ma)
Attems 1929, 1949, 1959
(A) (Ma) (nG)

Taxa
Melogona broelemanni albanica (Verhoeff, 1901)
Melogona broelemanni banatica (Verhoeff, 1899)
Haaseidae
Haasea lacusnigri Gulicka. 1968
heterolatzelidae
Heterolatzelia cormuta Gulicka, 1968
Heterotatzelia durmitorensis Gulicka, 1968
Heterolatzelia nivalis absoloni Attems, 1951
Neontractosomatidae
Neoatractosoma herzegowinense Verhoeff. 1901 Familia incertae sedis
Epirosomella loebli Strasser, 1976

CALLIPODIDA

DORyPETALIDAE
Dorypetalum degenerans (Latzel, 1884)
Dorypetalum degenerans bosniense (Verhoeff, 1897)
? = Dorypetalum trispiculigerum Verhoeff, 1900
Schizopetalioae Schizopetalini
Callipodella lasciata (Latzel, 1882)
$?=$ C. trifasciata (Daday, 1899), ? = C. dorsovittata (Verhoeff, 1900)

Callipodella mostarrensis (Verhoeft, 1901)
Callipodella mostarensis kerkana Verhoeff, 1929
Dischizopełalum illyricum (Latzel, 1884)
Apfelbeckiini
Apfelbeckia albanica Verhoeff, 1941
Aplelbeckia albosignata Verhoeff, 1901
Apfelbeckia lendenfeldi Verhoeff, 1901
Apfelbeckia lendentaldi miraculosa Attems, 1951
Apfetbeckla lendenteldi flavipes Attems, 1929
Apfelbeckia hessei Verhoeff, 1929, var. boldorii
Apfelbeckia wohlberedti Vernoeff, 1909
Himatiopetahum letericum (C. L. Koch, 1867)
Prolysiopetalini
Prolysiopetalum scabratum (C. L. Koch, 1867)
Acanthopetalini
Acanthopetalum (A.) albidicclle Verhoeff, 1900
Acanthopetalum (A.) sicamum (Berlese. 1883)
Acanthopetalum (A.) sicanum epiroticurn Altems, 1935
Acanthopetalum (A.) furculigorum patens Strasser, 1973
Acanthopetalum \{A.) furculigerum transitionis Strasser, 1976
Acanthopetalum (A.) subpatens n.sp.
Acanthopetalum (Petalysium) carinatum (Brandt, 1840)
$=$ Acanthopetalum (P_{-}) albanicum (*) (Verhoeff, 1932)
= Acanthopetalum (P.) comma (")(Verhoeff. 1900)
= Acanthopetalum (P.) macedonicum (") Verhoeff, 1923
$=$ Acanthopetalum (P) thessalorum (${ }^{*}$)(Verhoeff, 1901)
$=$ Acanthopetalum (P.) thessalorum lychnitis (*)
(Verhoeff, 1932)

Cited by

auct., Attems 1929, 1959 (A)
Attems 1959
(Mo)
(Mo)
(Mo)
(Mo)
(Mo)
($n \mathrm{G}$)

Attems 1929, 1959 (Ma)
Attems 1959
(nG)

Attems 1929, 1959
(A, Ma, Mo, nG)

Attems 1929, 1959 (A, Mo)
Attems 1959 (Mo)
Attems 1959
auct., Attems 1959 (A, Mo)
Attems 1929, 1959 (Mo)
auct. (Mo)
(Mo)
auct. (A)
Manfredi 1945, auct. (A)
auct., Attems 1959 (A) (Mo)
(nG)
($n \mathrm{G}$)
(A) ($n G$)
($n \mathrm{G}$)
(nG)
(nG)
(n G)
(A)

Attems 1929, 1959;
Manfredi 1945 (A, Mo, Ma)
auct., Attems 1959 (A) (Ma)
($n \mathrm{G}$)
Attems 1929, 1959 (Ma)
Attems 1929, 1959 (A)
(A) (Ma)

JULIDA
Nemasomatidae
Nemasoma varicorne C. L. Koch, 1847
Blaniulidae
Nopoiulus kochii (Gervais, 1847) = pulchellus (${ }^{*}$)
(C. L. Kach, 1838) $=$ venustus (*) $($ Meinert, 1868)

Attems 1929, 1949 (Ma)

Taxa

$=$ armatus (*) $($ Nemec, 1895) $=$ atticus (*)Verhoeff, 1925 Julidat Brachyiulini
Brachyiulus apfelbeckii Verhoefl, 1898
= Brachyilius apfelbeckil uncilobus (") Attems, nom. nud.
Brachyiulus lusitanus Verhoeff, 1898
Brachyiulus pusillus (Leach, 1814)
= Brachyiulus hitoralis (") Verhoeff, 1898
Brachyiulus sluxbergi (Fanzago, 1875)
Brachyiulus varibolinus Attems, 1904
$=$ Brachyiulus beralinus (") Manlredi, 1945
Megaphyllum austriacum (Latzel, 1884)
Megaphyllum bosniense (Verhoeff, 1897)
Megaphyllum bosniense fiavopictum (Attems, 1929)
Megaphyllum carniolense (Verhoeff, 1896)
Megaphyllum crassum (Attems, 1929)
Megaphyllum dentatum (Verhoeff, 1898)
Megaphyllum hercules (Verhoeff, 1901)
Megaphyllum imbecillum (Latzel, 1884)
Megaphyllum karschi (Verhoeff, 1901)
Megaphyllum macedonicum (Strasser, 1976)
Megaphyllum margaritalum epiroticum (Strasser, 1976)
Megaphyllum metsovoni (Strasser. 1976)
Megaphy/lum monticola (Verhoeff, 1898)
Megaphyllum recticauda (Attems, 1903)
Megaphyllum recticauda discrepans (Surisser, 1976)
Megaphyllum rubidicolle (Verhoeff. 1901)
Megaphyllum unilineatum (C. L Koch, 1838)
Pachyiulini
Acanthoiulus luscipes (C. L. Koch, 1847)
= Acanthoiulus fuscipes bosniensis (') (Verhoeff, 1895)
$=$ Acanthoiulus fuscipes idriensis (") (C. L. Koch, 1847)
= Acanthoiulus Juscipes s/mplex (${ }^{\circ}$) (Verhoeff, 1910) var. krohnii (Verhoeff. 1898) var. leuconotus (Latzel: 1884)
Pachyiulus apielbecki Verhoeff, 1901
Pachyiulus cattarensis (Latzel, 1884)
var. pseudounicolor Verhoeff, 1923
? = Pachyiulus longelobulatus (*) Attems, 1904
Pachyiulus dentiger Verhoeff, 1901
Pachyiulus marmoralus Verhoeff, 1901
Pachyiulus varius (Fabricius, 1781)
= var. pallipes (")Manlredi, 1945
= Pachyiulus apfelbecki (*) VerhoefI, 1901
= Pachyiulus navipes (')(C. L. Koch, 1847)
= Pachyiulus oenologus (") Berlese, 1885
Pachyiulus hungaricus (Karsch, 1881)
Pachyiulus venetus Verhoeff, 1926
Pachyiulus valononsis Verhoeff, 1901
Ommatoiulini
Ommatoiulus sabulosus (Linnaeus, 1758)

Cited by
Attems 1959

Attems 1929, 1959 (A, Mo, nG)
Attems 1959 (Mo)
(nG) (Ma)
Verhoeff 1901; Attems 1929,
1949, 1959 (A, Mo)
(n G)
(A, nG)
auct.
(Mo)
Attems 1927, 1929, 1959
(A, Mo, Ma)
auct.
Attems 1949 (Mo)
auct., Attems 1959 (Ma)
Attems 1927, 1929, 1959
(A, Ma)
auct., Altems 1929, 1959; Manfredi
1945: (A, Ma, nG)
Attems 1949 (nG) (A)
auct. Altems 1929, 1959 (nG)
(nG)
(nG)
(nG)
Attems 1929, 1959 (A, Mo)
(nG)
(nG)
(nG)
Attems 1929, 1949, 1959
Attems 1929, 1959
($\mathrm{A}, \mathrm{Mo}, \mathrm{Ma}, \mathrm{nG}$)
Attems 1929, 1959;
Manfredi 1945
Manfredi 1932
auct., Altems 1929, 1959
Attems 1929, 1959 (Mo)
Attems 1929, 1959 (Mo)
(nG)
Verhoeff 1901; Attems 1929, 1959;
Manfredi 1932, 1945
(A, Mo, Ma, nG)
Allents 1959 (Ma)
(A) (nG)
auct. Attems 1929, 1959
(nG)
Attems 1929, 1949, 1959; Manfredi
1945 (A, Mo, nG)
auct.
(nG)
Attems 1929, 1959 (A) (nG)
Attems 1929, 1959
(A, Mo, Ma, nG)
Manfredi 1945; Attems 1949
Attems 1929, 1959 (nG)
Attems 1929, 1949, 1959 (A, M)

Taxa

Leptoiulini + Typhloiulini Leptoiulus (Proleptoiulus) trilineatus (C. L. Koch, 1847)

Leptoiulus (P) trilineatus plasensis Verhoefl, 1908
Leptorulus (Orowlus) cernagoranus (Atterns, 1927)
Leptoiulus (Orolulus?) discophons (Atteins, 1927)
Leptolulus (O.) durmitorius (Attems, 1927)
Leptoiulus (O.) hauseri Strasser, 1976
Leptolulus (O,) kroslavi nom, nov. ${ }^{1}$
Leptoiulus (O.) latedorsalis (Verhoeff, 1898).
Leptoiulus (O.) macedonicus (Attems. 1927)
Leptoiulus (O.) matulicil (Verhoeff, 1901)
Leptoiulus (O.) pentheri (Attems, 1927)
Leptoiulus (O.) sarajevensis Verhoett. 1898
$=$ Macedoiulus storkani (") Verhoeff, 1932, syn. n. ${ }^{1}$
Leptotyphloiulus coeruleoalhus Verhoeff. 1899
Typhloiulus albanicus Attems, 1929
Typhloiulus beronin.sp.
Typhloiulus ganglbauerl Verhoeff, 1899
Typhioiulus psilonotus Laizel, 1884
Cylindroiulini
Cylindroiulus boleti (C. L. Koch, 1847)
Cylindroiulus (?) Iuridus (C. L, Koch, 1847)
Enantiulus nanus acutus (Attems, 1929)
Oncoiulini
Chromatolulus podabrus podabrus (Latzel. 1884)
Chromatoiulus podabrus bosniensis (Latzel, 1888)
Chromatoiuius (?) hamuligerus (Verhoeff. 1932) if
Telsonius nycterldonts Stıasser, 1976
Unciger foetidus (C. L. Koch, 1838)
Unciger transsilvanicus (Verhoeft, 1899)
Paectophyllini
Macheirioiulus compressicauda Verhoeff, 1901

POLYZONIDA

Polvzonidate
Polyzonium germanicum Brandt, 1831
= Polyzoniurn germanicum albanicum (*) Verhoeff, 1932
Hirudisomatidae
Hirudisoma hirsutum Verhoeff, 1901
PLATYDESMIDA
Andrognathidae
Dolistenus savii Fanzago, 1874
Fioria mediterranea (Daday, 1889)
Plutodesmus typhlus (Daday, 1889)

Cited by

Attems 1929, 1949, 1959
($\mathrm{A}, \mathrm{Ma}, \mathrm{Mo}$)
Attems 1959 (Mo)
(Mo)
auct., Attems 1929, 1959 (A, Mo)
(Mo)
($n G$)
auct., Attems 1959 (A, nG)
(Mo)
Attems 1929, 1959 (Ma, A)
(Mo)
auct., Attems 1929, 1959
Attems 1927, 1929, 1959
(Ma, Mo)
Attems 1959 (Ma)
auct. (A)
auct., Attems 1959 (Ma)
(A)
(Mo)
(Mo)
Attems 1927, 1929, 1949, 1959 (Ma, Mo)
Attems 1949
auct., Attems 1959
Attems 1929, 1959 (A, Mo, Ma, nG)
Attems 1929, 1959 (A, Mo, Ma)
Attems 1959 (A, Ma)
(nG)
Attems 1949, 1959
Attems 1949, 1959
Attems 1959 (nG)

Attems 1929, 1949, 1959 (A, Ma)
auct., Attems 1959
(nG)
(nG)
(nG)
(nG)

1. Even a superticial comparison of the available descriptions and illustrations of Leptoiulus sarajevensls (see Verhoeff 1898; Attems 1927) and Macedolulus storkanl (see Verhoelf 1932) leaves no doubt whatever that we face the same creature Hence the above new synonymy, analogous to that of Macedoitus Verhoell, 1932, under Leploiulus Verhoeff. 1894, syn n. Indeed. the only real autapomorphy of Macedoiulus vis-a-vis Leptoiulus appears the somewhat reduced flagellum of
the peltogonopods (male P.8), a highly unstable character which often tends to be lost independently in various julid (and not other) Ilneages, being al mosl speciesspecific. The missing velum on the gonopoos proper (male P.9) as well as some other leatures claimed by Verhoeff (1932) to distinguish his Macedoiulus from Leptoiulus do not really hold, being shared with some other assumed congeners (see also dicussion above). Unfortunately, the above synonymy requires a new
name to be chosen for Leptoiulus storkani, a species proposed by Verhoeff (1932) just two pages following the description of Macedoiulus storkani. To avoid homonymy, and still honour Dr. Jaroslav Storkan, the replacement name Leptoiulus jaroslavi, nom. nov., is herewith proposed. Interestingly, Strasser (1976) has reported both saraje-
vensis (sub Macedoiulus storkani) and jaroslavi (sub Leptoiulus storkani) from Albania, without mentioning any pertinent material. Hence he seems to have corrected Attems (1929, 1959), who had erroneously placed some neighbouring ex-yugoslav localities in Albania, and introduced some more of his own errors...

Addendum

Only a short time after the redaction of our text, we realize that some recent and interessant works of Mrsic 1987, 1988 and 1993, concerning Macedonia, was remained unknown of us. The last gives the list and chorology of Millipedes of Macedonia, sixty species, of which seventeen are new for Science and Macedonia: Glomeris pulchra C. L. Koch, 1847; Glomeris balcanica Verhoeff, 1906; Oxidus gracilis C. L. Koch, 1847; Brachydesmus henrikenghoffi Mrsic, 1993; Brachydesmus macedonicus Mrsic, 1988;

Polydesmus collaris tussilaginis Verhoeff, 1929; Polydesmus jawlowskii Strasser, 1966; Polydesmus juergengruberi Mrsic, 1993; Polydesmus mediterraneus oertzeni Verhoeff, 1901; Polydesmus renschi Schubart, 1934; Schizmohetera sketi Mrsic, 1987; Megaphyllum transsilvanicum (Verhoeff, 1897); Megaphyllum unilineatum (C. L. Koch, 1847); Rhodopiella beroni Strasser, 1966; Cylindroiulus arborum (Verhoeff, 1928); Cylindroiulus luridus (C. L. Koch, 1847); Unciger foetidus (C. L. Koch, 1838).

